• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220335 (2022)
Qijing Lu1, Lingqin Liao1, Fangjie Shu2, Ming Li3, Shusen Xie1, and Changling Zou3、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
  • 2Henan Province Engineering Research Center of Microcavity and Photoelectric Intelligent Sensing, School of Electronics and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China
  • 3CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • show less
    DOI: 10.3788/IRLA20220335 Cite this Article
    Qijing Lu, Lingqin Liao, Fangjie Shu, Ming Li, Shusen Xie, Changling Zou. Research progress of optical frequency comb in visible light band based on whispering gallery microcavities (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220335 Copy Citation Text show less
    References

    [1] T Herr, V Brasch, J D Jost, et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-152(2014).

    [2] Yang Q F, Suh M G, Yang K Y, et al. Micresonat soliton dualcomb spectroscopy[C]Conference on Lasers ElectroOptics (CLEO), 2017: SM4D. 4.

    [3] S T Cundiff, J Ye. Colloquium: Femtosecond optical frequency combs. Reviews of Modern Physics, 75, 325-342(2003).

    [4] S Koke, C Grebing, H Frei, et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nature Photonics, 4, 462-465(2010).

    [5] B Stern, X C Ji, Y Okawachi, et al. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [6] B C Yao, S W Huang, Y Liu, et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).

    [7] A B Matsko, A A Savchenkov, D Strekalov, et al. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Physical Review A, 71, 033804(2005).

    [8] G P Lin, A Coillet, Y K Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Advances in Optics and Photonics, 9, 828-890(2017).

    [9] M Kues, C Reimer, J M Lukens, et al. Quantum optical microcombs. Nature Photonics, 13, 170-179(2019).

    [10] P Del'Haye, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [11] T Udem, R Holzwarth, T W Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [12] D J Jones, S A Diddams, J K Ranka, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science, 288, 635-639(2000).

    [13] D T Spencer, T Drake, T C Briles, et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81-85(2018).

    [14] T Steinmetz, T Wilken, C Araujo-Hauck, et al. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).

    [15] M G Suh, K J Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [16] A Bartels, D Heinecke, S A Diddams. 10-GHz self-referenced optical frequency comb. Science, 326, 681-681(2009).

    [17] K J Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [18] I Breunig. Three-wave mixing in whispering gallery resonators. Laser & Photonics Reviews, 10, 569-587(2016).

    [19] D V Strekalov, C Marquardt, A B Matsko, et al. Nonlinear and quantum optics with whispering gallery resonators. Journal of Optics, 18, 123002(2016).

    [20] A L Gaeta, M Lipson, T J Kippenberg. Photonic-chip-based frequency combs. Nature Photonics, 13, 158-169(2019).

    [21] T J Kippenberg, S M Spillane, K J Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Physical Review Letters, 93, 083904(2004).

    [22] A A Savchenkov, A B Matsko, D Strekalov, et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Physical Review Letters, 93, 243905(2004).

    [23] T J Kippenberg, R Holzwarth, S A Diddams. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).

    [24] Mengyu Wang, Lekang Fan, Lingfeng Wu, et al. Research on Kerr optical frequency comb generation based on MgF2 crystalline microresonator with ultra-high-Q factor. Infrared and Laser Engineering, 50, 20210481(2021).

    [25] I H Agha, Y Okawachi, A L Gaeta. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Optics Express, 17, 16209-16215(2009).

    [26] Y Okawachi, K Saha, J S Levy, et al. Octave-spanning frequency comb generation in a silicon nitride chip. Optics Letters, 36, 3398-3400(2011).

    [27] H Jung, C Xiong, K F Fong, et al. Optical frequency comb generation from aluminum nitride microring resonator. Optics Letters, 38, 2810-2813(2013).

    [28] B J M Hausmann, I Bulu, V Venkataraman, et al. Diamond nonlinear photonics. Nature Photonics, 8, 369-374(2014).

    [29] V Brasch, M Geiselmann, T Herr, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [30] S Kim, K Han, C Wang, et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nature Communications, 8, 372(2017).

    [31] C Wang, M Zhang, M J Yu, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).

    [32] P Del'Haye, T Herr, E Gavartin, et al. Octave spanning tunable frequency comb from a microresonator. Physical Review Letters, 107, 063901(2011).

    [33] X X Xue, Y Xuan, Y Liu, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9, 594-600(2015).

    [34] X Yi, Q F Yang, K Y Yang, et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078-1085(2015).

    [35] Q F Yang, X Yi, K Y Yang, et al. Stokes solitons in optical microcavities. Nature Physics, 13, 53-57(2017).

    [36] A M Weiner. Frequency combs cavity solitons come of age. Nature Photonics, 11, 533-535(2017).

    [37] T J Kippenberg, A L Gaeta, M Lipson, et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [38] E Obrzud, M Rainer, A Harutyunyan, et al. A microphotonic astrocomb. Nature Photonics, 13, 31-35(2019).

    [39] A D Ludlow, M M Boyd, J Ye, et al. Optical atomic clocks. Reviews of Modern Physics, 87, 637-701(2015).

    [40] R Holzwarth, T Udem, T W Hansch, et al. Optical frequency synthesizer for precision spectroscopy. Physical Review Letters, 85, 2264(2000).

    [41] M T Murphy, T Udem, R Holzwarth, et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Monthly Notices of the Royal Astronomical Society, 380, 839-847(2007).

    [42] H S Margolis. Spectroscopic applications of femtosecond optical frequency combs. Chemical Society Reviews, 41, 5174-5184(2012).

    [43] I Hartl, X D Li, C Chudoba, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Optics Letters, 26, 608-610(2001).

    [44] B A Wilt, L D Burns, E T W Ho, et al. Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435-506(2009).

    [45] A F Fercher, W Drexler, C K Hitzenberger, et al. Optical coherence tomography - principles and applications. Reports on Progress in Physics, 66, 239-303(2003).

    [46] T Ideguchi, S Holzner, S B Bernhardt, et al. Coherent Raman spectro-imaging with laser frequency combs. Nature, 502, 355-358(2013).

    [47] S Wan, R Niu, J L Peng, et al. Fabrication of the high-Q Si3N4 microresonators for soliton microcombs. Chinese Optics Letters, 20, 032201(2022).

    [48] Z Z Lu, W Q Wang, W F Zhang, et al. Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Advances, 9, 025314(2019).

    [49] S Fujii, T Tanabe. Dispersion engineering and measurement of whispering gallery mode microresonator for Kerr frequency comb generation. Nanophotonics, 9, 1087-1104(2020).

    [50] S Miller, K Luke, Y Okawachi, et al. On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities. Optics Express, 22, 26517-26525(2014).

    [51] X W Liu, C Z Sun, B Xiong, et al. Generation of multiple near-visible comb lines in an AlN microring via chi((2)) and chi((3)) optical nonlinearities. Applied Physics Letters, 113, 171106(2018).

    [52] X Guo, C L Zou, H Jung, et al. Efficient generation of a near-visible frequency comb via Cherenkov-like radiation from a Kerr microcomb. Physical Review Applied, 10, 014012(2018).

    [53] A W Bruch, X Liu, Z Gong, et al. Pockels soliton microcomb. Nature Photonics, 15, 21-27(2021).

    [54] Z Gong, A W Bruch, F Yang, et al. Quadratic strong coupling in AlN Kerr cavity solitons. Optics Letters, 47, 746-749(2022).

    [55] L R Wang, L Chang, N Volet, et al. Frequency comb generation in the green using silicon nitride microresonators. Laser & Photonics Reviews, 10, 631-638(2016).

    [56] J Szabados, D N Puzyrev, Y Minet, et al. Frequency comb generation via cascaded second-order nonlinearities in microresonators. Physical Review Letters, 124, 203902(2020).

    [57] A V Buryak, Trapani P Di, D V Skryabin, et al. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Physics Reports-Review Section of Physics Letters, 370, 63-235(2002).

    [58] D V Skryabin, A R Champneys. Walking cavity solitons. Physical Review E, 63, 066610(2001).

    [59] A Villois, N Kondratiev, I Breunig, et al. Frequency combs in a microring optical parametric oscillator. Optics Letters, 44, 4443-4446(2019).

    [60] A Villois, D V Skryabin. Soliton and quasi-soliton frequency combs due to second harmonic generation in microresonators. Optics Express, 27, 7098-7107(2019).

    [61] H J Chen, Q X Ji, H Wang, et al. Chaos-assisted two-octave-spanning microcombs. Nature Communications, 11, 1-6(2020).

    [62] X Guo, C L Zou, C Schuck, et al. Parametric down-conversion photon-pair source on a nanophotonic chip. Light: Science & Applications, 6, e16249(2017).

    [63] X Jiang, L Shao, S X Zhang, et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [64] Y Yang, X F Jiang, S Kasumie, et al. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Optics Letters, 41, 5266-5269(2016).

    [65] N Riesen, W Q Zhang, T M Monro. Dispersion in silica microbubble resonators. Optics Letters, 41, 1257-1260(2016).

    [66] F J Shu, P J Zhang, Y J Qian, et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Science China-Physics Mechanics & Astronomy, 63, 254211(2020).

    [67] J Y Ma, L F Xiao, J X Gu, et al. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photonics Research, 7, 573-578(2019).

    [68] Y Zhao, X C Ji, B Y Kim, et al. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica, 7, 135-141(2020).

    [69] L W Luo, N Ophir, C P Chen, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nature Communications, 5, 3069(2014).

    [70] Karpov M, Guo H R, Pfeiffer M H , et al. Dynamics of soliton crystals in optical micresonats[C]Conference on Lasers ElectroOptics (CLEO), 2017.

    [71] S Wan, R Niu, Z Y Wang, et al. Frequency stabilization and tuning of breathing solitons in Si3N4 microresonators. Photonics Research, 8, 1342-1349(2020).

    [72] X Y Wang, P Xie, W Q Wang, et al. Program-controlled single soliton microcomb source. Photonics Research, 9, 66-72(2021).

    [73] S Coen, H G Randle, T Sylvestre, et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Optics Letters, 38, 37-39(2013).

    [74] C Godey, I V Balakireva, A Coillet, et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. Physical Review A, 89, 063814(2014).

    [75] A A Savchenkov, A B Matsko, W Liang, et al. Kerr combs with selectable central frequency. Nature Photonics, 5, 293-296(2011).

    [76] Q Lu, X Wu, L Liu, et al. Mode-selective lasing in high-Q polymer micro bottle resonators. Optics Express, 23, 22740-22745(2015).

    [77] Q Lu, X Chen, X Liu, et al. Opto-fluidic-plasmonic liquid-metal core microcavity. Applied Physics Letters, 117, 161101(2020).

    [78] Q J Lu, S Liu, X Wu, et al. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators. Optics Letters, 41, 1736-1739(2016).

    [79] Y H Yin, Y X Niu, H Y Qin, et al. Kerr frequency comb generation in microbottle resonator with tunable zero dispersion wavelength. Journal of Lightwave Technology, 37, 5571-5575(2019).

    [80] X Y Jin, X Xu, H R Gao, et al. Controllable two-dimensional Kerr and Raman-Kerr frequency combs in microbottle resonators with selectable dispersion. Photonics Research, 9, 171-180(2021).

    [81] S Ramelow, A Farsi, S Clemmen, et al. Strong polarization mode coupling in microresonators. Optics Letters, 39, 5134-5137(2014).

    [82] T Carmon, H G L Schwefel, L Yang, et al. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. Physical Review Letters, 100, 103905(2008).

    [83] A A Savchenkov, A B Matsko, W Liang, et al. Kerr frequency comb generation in overmoded resonators. Optics Express, 20, 27290-27298(2012).

    [84] X X Xue, Y Xuan, C Wang, et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Optics Express, 24, 687-698(2016).

    [85] G Lin, S Diallo, K Saleh, et al. Cascaded Brillouin lasing in monolithic barium fluoride whispering gallery mode resonators. Applied Physics Letters, 105, 231103(2014).

    [86] M Soltani, A Matsko, L Maleki. Enabling arbitrary wavelength frequency combs on chip. Laser & Photonics Reviews, 10, 158-162(2016).

    [87] S H Lee, D Y Oh, Q F Yang, et al. Towards visible soliton microcomb generation. Nature Communications, 8, 1295(2017).

    [88] H Wang, Y K Lu, L Wu, et al. Dirac solitons in optical microresonators. Light: Science & Applications, 9, 205(2020).

    [89] N Akhmediev, M Karlsson. Cherenkov radiation emitted by solitons in optical fibers. Physical Review A, 51, 2602-2607(1995).

    [90] N Watanabe, H Tamura, M Musha, et al. Optical frequency synthesizer for precision spectroscopy of Rydberg states of Rb atoms. Japanese Journal of Applied Physics, 56, 112401(2017).

    [91] A E Dorche, D Timucin, K Thyagarajan, et al. Advanced dispersion engineering of a III-nitride micro-resonator for a blue frequency comb. Optics Express, 28, 30542-30554(2020).

    [92] G H Choi, A Gin, J Su. Optical frequency combs in aqueous and air environments at visible to near-IR wavelengths. Optics Express, 30, 8690-8699(2022).

    Qijing Lu, Lingqin Liao, Fangjie Shu, Ming Li, Shusen Xie, Changling Zou. Research progress of optical frequency comb in visible light band based on whispering gallery microcavities (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220335
    Download Citation