• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 8, 2943 (2022)
HE Shunwu1、*, TIAN Hongsong1, LI Ying2, YE Entong1, ZHANG Li1, LIN Qian1, and PAN Hongyan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    HE Shunwu, TIAN Hongsong, LI Ying, YE Entong, ZHANG Li, LIN Qian, PAN Hongyan. Preparation and Electrochemical Properties of Rigid Skeleton COS-NMC Material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2943 Copy Citation Text show less
    References

    [2] LIU L, ZHANG H L, WANG G X, et al. Synthesis of mesoporous carbon nanospheres via “pyrolysis-deposition” strategy for CO2 capture[J]. Journal of Materials Science, 2017, 52(16): 9640-9647.

    [3] DU J, LIU L, HU Z P, et al. Order mesoporous carbon spheres with precise tunable large pore size by encapsulated self-activation strategy[J]. Advanced Functional Materials, 2018, 28(33): 1802332.

    [4] WANG C J, WU D P, WANG H J, et al. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity[J]. Journal of Materials Chemistry A, 2018, 6(3): 1244-1254.

    [7] WANG X Q, LEE J S, ZHU Q, et al. Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction[J]. Chemistry of Materials, 2010, 22(7): 2178-2180.

    [8] LIANG Z J, HONG Z B, XIE M Y, et al. Recent progress of mesoporous carbons applied in electrochemical catalysis[J]. New Carbon Materials, 2022, 37(1): 152-179.

    [9] HUANG C H, DOONG R A. Sugarcane bagasse as the scaffold for mass production of hierarchically porous carbon monoliths by surface self-assembly[J]. Microporous and Mesoporous Materials, 2012, 147(1): 47-52.

    [11] SWIEGERS G F, HUANG J H, BRIMBLECOMBE R, et al. Homogeneous catalysts with a mechanical (“machine-like”) action[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2009, 15(19): 4746-4759.

    [12] DONG X S, LIU X W, CHEN H, et al. Hard template-assisted N, P-doped multifunctional mesoporous carbon for supercapacitors and hydrogen evolution reaction[J]. Journal of Materials Science, 2021, 56(3): 2385-2398.

    [14] LI K C, XING R E, LIU S, et al. Access to N-acetylated chitohexaose with well-defined degrees of acetylation[J]. BioMed Research International, 2017, 2017: 2486515.

    [15] LIU H, BAO J G, DU Y M, et al. Effect of ultrasonic treatment on the biochemphysical properties of chitosan[J]. Carbohydrate Polymers, 2006, 64(4): 553-559.

    [16] CZECHOWSKA-BISKUP R, ROKITA B, LOTFY S, et al. Degradation of chitosan and starch by 360-kHz ultrasound[J]. Carbohydrate Polymers, 2005, 60(2): 175-184.

    [17] MOCHIDA I, KU C H, YOON S H, et al. Anodic performances of anisotropic carbon derived from isotropic quinoline pitch[J]. Carbon, 1999, 37(2): 323-327.

    [18] PARAKNOWITSCH J P, THOMAS A, ANTONIETTI M. A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials[J]. Journal of Materials Chemistry, 2010, 20(32): 6746.

    [19] BENCHAMAS G, HUANG G L, HUANG S Y, et al. Preparation and biological activities of chitosan oligosaccharides[J]. Trends in Food Science & Technology, 2021, 107: 38-44.

    [20] WANG Q, WU J, WANG W B, et al. Preparation, characterization and drug-release behaviors of crosslinked chitosan/attapulgite hybrid microspheres by a facile spray-drying technique[J]. Journal of Biomaterials and Nanobiotechnology, 2011, 2(3): 250-257.

    [21] NISTIC R, FRANZOSO F, CESANO F, et al. Chitosan-derived iron oxide systems for magnetically guided and efficient water purification processes from polycyclic aromatic hydrocarbons[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 793-801.

    [22] PENG H L, ZHANG J B, ZHANG J Y, et al. Chitosan-derived mesoporous carbon with ultrahigh pore volume for amine impregnation and highly efficient CO2 capture[J]. Chemical Engineering Journal, 2019, 359: 1159-1165.

    [23] SUN Z M, XU J, WANG G F, et al. Hydrothermal fabrication of rectorite based biocomposite modified by chitosan derived carbon nanoparticles as efficient mycotoxins adsorbents[J]. Applied Clay Science, 2020, 184: 105373.

    [24] BIBI S, YASIN T, HASSAN S, et al. Chitosan/CNTs green nanocomposite membrane: synthesis, swelling and polyaromatic hydrocarbons removal[J]. Materials Science and Engineering: C, 2015, 46: 359-365.

    [25] SHCHERBAN N, FILONENKO S, YAREMOV P, et al. Boron-doped nanoporous carbons as promising materials for supercapacitors and hydrogen storage[J]. Journal of Materials Science, 2017, 52(3): 1523-1533.

    [27] KAUFMAN J H, METIN S, SAPERSTEIN D D. Symmetry breaking in nitrogen-doped amorphous carbon: infrared observation of the Raman-active G and D bands[J]. Physical Review B, 1989, 39(18): 13053-13060.

    [28] SCHWAN J, ULRICH S, BATORI V, et al. Raman spectroscopy on amorphous carbon films[J]. Journal of Applied Physics, 1996, 80(1): 440-447.

    [29] LI Y G, ZHOU W, WANG H L, et al. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes[J]. Nature Nanotechnology, 2012, 7(6): 394-400.

    [30] MCKEOWN N B, BUDD P M, MSAYIB K J, et al. Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials[J]. Chemistry-A European Journal, 2005, 11(9): 2610-2620.

    [31] MA Y, MA C, SHENG J, et al. Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors[J]. Journal of Colloid and Interface Science, 2016, 461: 96-103.

    [33] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.

    [34] MOHOD A V, GOGATE P R. Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA)[J]. Ultrasonics Sonochemistry, 2011, 18(3): 727-734.

    [35] GUO Y G, HU Y S, SIGLE W, et al. Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks[J]. Advanced Materials, 2007, 19(16): 2087-2091.

    [36] BABARAO R, DAI S, JIANG D E. Nitrogen-doped mesoporous carbon for carbon capture: a molecular simulation study[J]. The Journal of Physical Chemistry C, 2012, 116(12): 7106-7110.

    [37] MO Y H, DU J, LV H J, et al. N-doped mesoporous carbon nanosheets for supercapacitors with high performance[J]. Diamond and Related Materials, 2021, 111: 108206.

    [38] SEVILLA M, FUERTES A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chemistry-A European Journal, 2009, 15(16): 4195-4203.

    [40] TAN J B, HE X B, YIN F X, et al. β-Mo2C/N, P-co-doped carbon as highly efficient catalyst for hydrogen evolution reaction[J]. Journal of Materials Science, 2019, 54(6): 4589-4600.

    [41] WIENER C G, QIANG Z, XIA Y F, et al. Impact of surface wettability on dynamics of supercooled water confined in nitrogen-doped ordered mesoporous carbon[J]. Physical Chemistry Chemical Physics, 2018, 20(44): 28019-28025.

    [42] KWON T, NISHIHARA H, ITOI H, et al. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels[J]. Langmuir, 2009, 25(19): 11961-11968.

    [43] XIONG W, LIU M X, GAN L H, et al. Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411: 34-39.

    [44] DU J, LIU L, YU Y F, et al. N-doping carbon sheet and core-shell mesoporous carbon sphere composite for high-performance supercapacitor[J]. Journal of Industrial and Engineering Chemistry, 2019, 76: 450-456.

    [45] SONG F X, CHEN Q L, LI Y, et al. High energy density supercapacitors based on porous mSiO2@Ni3S2/NiS2 promoted with boron nitride and carbon[J]. Chemical Engineering Journal, 2020, 390: 124561.

    [46] XIN X P, KANG H Q, FENG J G, et al. A novel sol-gel strategy for N, P dual-doped mesoporous carbon with high specific capacitance and energy density for advanced supercapacitors[J]. Chemical Engineering Journal, 2020, 393: 124710.

    [48] SUN F, QU Z B, GAO J H, et al. In situ doping boron atoms into porous carbon nanoparticles with increased oxygen graft enhances both affinity and durability toward electrolyte for greatly improved supercapacitive performance[J]. Advanced Functional Materials, 2018, 28(41): 1804190.

    [49] CHEN L, WEN Z Y, CHEN L N, et al. Nitrogen and sulfur co-doped porous carbon fibers film for flexible symmetric all-solid-state supercapacitors[J]. Carbon, 2020, 158: 456-464.

    HE Shunwu, TIAN Hongsong, LI Ying, YE Entong, ZHANG Li, LIN Qian, PAN Hongyan. Preparation and Electrochemical Properties of Rigid Skeleton COS-NMC Material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2943
    Download Citation