• Opto-Electronic Advances
  • Vol. 2, Issue 4, 180022 (2019)
Junxian Ma1, Dezheng Zeng1, Yatao Yang1, Can Pan1..., Li Zhang1,* and Haidong Xu2|Show fewer author(s)
Author Affiliations
  • 1College of Information Engineering, Shenzhen University, Shenzhen 518000, China
  • 2University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518000, China
  • show less
    DOI: 10.29026/oea.2019.180022 Cite this Article
    Junxian Ma, Dezheng Zeng, Yatao Yang, Can Pan, Li Zhang, Haidong Xu. A review of crosstalk research for plasmonic waveguides[J]. Opto-Electronic Advances, 2019, 2(4): 180022 Copy Citation Text show less
    References

    [1] D K Gramotnev, S I Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat Photonics, 4, 83-91(2010).

    [2] E Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189-193(2006).

    [3] Proceedings of the 19th ACM Great Lakes Symposium on VLSI 275-280 (ACM, 2009); http://doi.org/10.1145/1531542.1531607.DokaniaR KApselA BAnalysis of challenges for on-chip optical interconnects. In Proceedings of the 19th ACM Great Lakes Symposium on VLSI 275-280 (ACM, 2009) http://doi.org/10.1145/1531542.1531607

    [4] D A B Miller. Device requirements for optical interconnects to silicon chips. Proc IEEE, 97, 1166-1185(2009).

    [5] M Piliarik, J Homola. Surface plasmon resonance (SPR) sensors: approaching their limits?. Opt Express, 17, 16505-16517(2009).

    [6] S A Maier, P G Kik, H A Atwater, S Meltzer, E Harel et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater, 2, 229-232(2003).

    [7] R Charbonneau, N Lahoud, G Mattiussi, P Berini. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt Express, 13, 977-984(2005).

    [8] P Berini. Long-range surface plasmon polaritons. Adv Opt Photonics, 1, 484-588(2009).

    [9] B Steinberger, A Hohenau, H Ditlbacher, A L Stepanov, A Drezet et al. Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett, 88, 094104(2006).

    [10] Z Chen, T Holmgaard, S I Bozhevolnyi, A V Krasavin, A V Zayats et al. Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt Lett, 34, 310-312(2009).

    [11] S I Bozhevolnyi, V S Volkov, E Devaux, J Y Laluet, T W Ebbesen. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 440, 508-511(2006).

    [12] V S Volkov, S I Bozhevolnyi, E Devaux, J Y Laluet, T W Ebbesen. Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett, 7, 880-884(2007).

    [13] D F P Pile, T Ogawa, D K Gramotnev, T Okamoto, M Haraguchi et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl Phys Lett, 87, 061106(2005).

    [14] A Boltasseva, V S Volkov, R B Nielsen, E Moreno, S G Rodrigo et al. Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt Express, 16, 5252-5260(2008).

    [15] D K Gramotnev, K C Vernon, D F P Pile. Directional coupler using gap plasmon waveguides. Appl Phys B, 93, 99-106(2008).

    [16] K Tanaka, M Tanaka, T Sugiyama. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Opt Express, 13, 256-266(2005).

    [17] G Veronis, S H Fan. Guided subwavelength plasmonic mode supported by a slot in a thin metal film. Opt Lett, 30, 3359-3361(2005).

    [18] R F Oulton, V J Sorger, D A Genov, D F P Pile, X Zhang. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics, 2, 496-500(2008).

    [19] D X Dai, S L He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express, 17, 16646-16653(2009).

    [20] M Fujii, J Leuthold, W Freude. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technol Lett, 21, 362-364(2009).

    [21] R Zia, M D Selker, P B Catrysse, M L Brongersma. Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A, 21, 2442-2446(2004).

    [22] L Liu, Z H Han, S L He. Novel surface plasmon waveguide for high integration. Opt Express, 13, 6645-6650(2005).

    [23] G Veronis, S H Fan. Crosstalk between three-dimensional plasmonic slot waveguides. Opt Express, 16, 2129-2140(2008).

    [24] Y S Bian, Z Zheng, X Zhao, J S Zhu, T Zhou. Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration. Opt Express, 17, 21320-21325(2009).

    [25] Y Song, M Yan, Q Yang, L M Tong, M Qiu. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Opt Commun, 284, 480-484(2011).

    [26] J Xiao, J S Liu, Z Zheng, Y S Bian, G J Wang et al. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Opt Commun, 285, 3604-3607(2012).

    [27] E Devaux, S I Bozhevolnyi, T W Ebbesen, V S Volkov, V A Zenin et al. Directional coupling in channel plasmon-polariton waveguides. Opt Express, 20, 6124-6134(2012).

    [28] Z H Han, S I Bozhevolnyi. Radiation guiding with surface plasmon polaritons. Rep Prog Phys, 76, 016402(2013).

    [29] C C Huang. Ultra-long-range symmetric plasmonic waveguide for high-density and compact photonic devices. Opt Express, 21, 29544-29557(2013).

    [30] R K S Shruti, R Bhattacharyya. Coupling and crosstalk characteristics of hybrid silicon plasmonic waveguides. Appl Phys B, 116, 241-248(2014).

    [31] L Chen, T Zhang, W Hong, X Zhou, X Li. A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. Journal of Lightwave Technology, 32, 4199-4203(2014).

    [32] A N Ma, G J Li, Y E Li. Crosstalk and coupling analysis of wedge plasmon polariton waveguides by the improved coupled mode theory. J Nanoelectron Optoelectron, 10, 828-832(2015).

    [33] Kuznetsov E V, Merzlikin A M, Zyablovsky A A, Vinogradov A P, Lisyansky A A. Suppression of crosstalk in coupled plasmonic waveguides. arXiv: 1611.08214 [physics.optics] (2016).KuznetsovE VMerzlikinA MZyablovskyA AVinogradovA PLisyanskyA ASuppression of crosstalk in coupled plasmonic waveguides. arXiv: 1611.08214 [physics.optics] (2016)

    [34] X Q He, T G Ning, S H Lu, J J Zheng, J Li et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement. Opt Express, 26, 10109-10118(2018).

    [35] T Holmgaard, Z Chen, S I Bozhevolnyi, L Markey, A Dereux. Design and characterization of dielectric-loaded plasmonic directional couplers. J Lightw Technol, 27, 5521-5528(2009).

    [36] M S Kwon. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Opt Express, 19, 8379-8393(2011).

    [37] Y S Bian, Q H Gong. Optical performance of one-dimensional hybrid metal-insulator-metal structures at telecom wavelength. Opt Commun, 308, 30-35(2013).

    [38] Y S Bian, Z Zheng, X Zhao, L Liu, Y L Su et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. J Lightw Technol, 31, 1973-1979(2013).

    [39] R Hao, E Cassan, Y Xu, M Qiu, X C Wei et al. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J Sel Top Quantum Electron, 19, 4601809(2013).

    [40] Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility 1021-1023 (IEEE, 2016); http://doi.org/10.1109/APEMC.2016.7522934. HaoRPengX LChenH SYinW YLiE PPlasmonic transmission lines with zero crosstalk. In Proceedings of 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility 1021-1023 (IEEE, 2016) http://doi.org/10.1109/APEMC.2016.7522934

    [41] A Dolatabady, N Granpayeh. Plasmonic directional couplers based on multi-slit waveguides. Plasmonics, 12, 597-604(2017).

    [42] K Nakayama, Y Tonooka, M Ota, Y Ishii, M Fukuda. Passive plasmonic demultiplexers using multimode interference. J Lightw Technol, 36, 1979-1984(2018).

    [43] S Joshi, V Nehra, B K Kaushik. Modeling and simulation analysis of graphene integrated silicon waveguides. Proc SPIE, 10345, 1034518(2017).

    [44] M S Kwon, Y Kim. Theoretical investigation of intersections of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics J, 8, 2701510(2016).

    [45] J Liu, J Xiao, J Zhu, L Liu, T Zhou et al. Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes. Journal of Lightwave Technology, 31, 1973-1979(2013).

    [46] W Zhou, X G Huang. Long-range air-hole assisted subwavelength waveguides. Nanotechnology, 24, 235203(2013).

    [47] W F Jiang, F Y Cheng, J Xu, H D Wan. Compact and low-crosstalk mode (de)multiplexer using a triple plasmonic-dielectric waveguide-based directional coupler. J Opt Soc Am B, 35, 2532-2540(2018).

    [48] J Cui, Y Sun, L Wang, P J Ma. Graphene plasmonic waveguide based on a high-index dielectric wedge for compact photonic integration. Optik, 127, 152-155(2016).

    [49] M Mrejen, H Suchowski, T Hatakeyama, C H Wu, L Feng et al. Adiabatic elimination-based coupling control in densely packed subwavelength waveguides. Nat Commun, 6, 7565(2015).

    Junxian Ma, Dezheng Zeng, Yatao Yang, Can Pan, Li Zhang, Haidong Xu. A review of crosstalk research for plasmonic waveguides[J]. Opto-Electronic Advances, 2019, 2(4): 180022
    Download Citation