• Laser & Optoelectronics Progress
  • Vol. 58, Issue 23, 2314011 (2021)
Xufei Liu1, Dan'ao Han2, Hui Guo3, and Yonglai Zhang2、*
Author Affiliations
  • 1State Grid Jilin Electric Power Co., Ltd., Changchun, Jilin 130000, China
  • 2College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, China
  • 3State Grid Jilin Electric Power Research Institute, Changchun, Jilin 130021, China
  • show less
    DOI: 10.3788/LOP202158.2314011 Cite this Article Set citation alerts
    Xufei Liu, Dan'ao Han, Hui Guo, Yonglai Zhang. Surface Enhanced Raman Scattering Substrates Based on Femtosecond Laser Structured Polytetrafluoroethylene[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314011 Copy Citation Text show less
    References

    [1] Lane L A, Qian X M, Nie S M. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging[J]. Chemical Reviews, 115, 10489-10529(2015).

    [2] Granger J H, Schlotter N E, Crawford A C et al. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS)[J]. Chemical Society Reviews, 45, 3865-3882(2016).

    [3] Sinha S S, Jones S, Pramanik A et al. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis[J]. Accounts of Chemical Research, 49, 2725-2735(2016).

    [4] Zhu Y M, Zheng W, Wang W L et al. Raman tensor of layered black phosphorus[J]. PhotoniX, 1, 1-9(2020).

    [5] Jin Y, Feng J, Zhang X L et al. Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Advanced Materials, 24, 1187-1191(2012).

    [6] Cardinal M F, Ende E V, Hackler R A et al. Expanding applications of SERS through versatile nanomaterials engineering[J]. Chemical Society Reviews, 46, 3886-3903(2017).

    [7] Balčytis A, Nishijima Y, Krishnamoorthy S et al. From fundamental toward applied SERS: shared principles and divergent approaches[J]. Advanced Optical Materials, 6, 1800292(2018).

    [8] Lee H K, Lee Y H, Koh C S L et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials[J]. Chemical Society Reviews, 48, 731-756(2019).

    [9] Liang X, Li N, Zhang R H et al. Carbon-based SERS biosensor: from substrate design to sensing and bioapplication[J]. NPG Asia Materials, 13, 8(2021).

    [10] Ma Q, Cui T J. Information metamaterials: bridging the physical world and digital world[J]. PhotoniX, 1, 1-32(2020).

    [11] Bi Y G, Feng J, Li Y F et al. Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity[J]. Advanced Materials, 25, 6969-6974(2013).

    [12] Xu K C, Zhou R, Takei K et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Advanced Science, 6, 1900925(2019).

    [13] Huang J A, Zhang Y L, Ding H et al. SERS-enabled lab-on-a-chip systems[J]. Advanced Optical Materials, 3, 618-633(2015).

    [14] Gwo S, Wang C Y, Chen H Y et al. Plasmonic metasurfaces for nonlinear optics and quantitative SERS[J]. ACS Photonics, 3, 1371-1384(2016).

    [15] Wang Z Y, Zong S F, Wu L et al. SERS-activated platforms for immunoassay: probes, encoding methods, and applications[J]. Chemical Reviews, 117, 7910-7963(2017).

    [16] Kannan P K, Shankar P, Blackman C et al. Recent advances in 2D inorganic nanomaterials for SERS sensing[J]. Advanced Materials, 31, e1803432(2019).

    [17] Wang J, Koo K M, Wang Y L et al. Engineering state-of-the-art plasmonic nanomaterials for SERS-based clinical liquid biopsy applications[J]. Advanced Science, 6, 1900730(2019).

    [18] Sun Y L, Dong W F, Yang R Z et al. Dynamically tunable protein microlenses[J]. Angewandte Chemie International Edition, 51, 1558-1562(2012).

    [19] Yin D, Feng J, Ma R et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process[J]. Nature Communications, 7, 11573(2016).

    [20] Fang H H, Ding R, Lu S Y et al. Distributed feedback lasers based on thiophene/phenylene co-oligomer single crystals[J]. Advanced Functional Materials, 22, 33-38(2012).

    [21] Han D D, Cai Q, Li J C et al. Preparation of laser induced graphene based underwater superoleophobic bionic surface[J]. Laser & Optoelectronics Progress, 57, 151408(2020).

    [22] Chen Z D, Li J C, Xiao S L et al. Laser reduced graphene oxide for thin film flexible electronic devices[J]. Laser & Optoelectronics Progress, 57, 111428(2020).

    [23] Li J C, Chen Z D, Han D D et al. Laser processing of polyvinylidene fluoride with superhydrophobicity[J]. Chinese Journal of Lasers, 48, 0202002(2021).

    [24] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light, Science & Applications, 7, 17134(2018).

    [25] Serien D, Sugioka K. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking[J]. Opto-Electronic Advances, 1, 18000801-18000818(2018).

    [26] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications[J]. Laser & Photonics Reviews, 14, 1900407(2020).

    [27] Zou T, Zhao B, Xin W et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse[J]. Light, Science & Applications, 9, 69(2020).

    [28] Sakakura M, Lei Y H, Wang L et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass[J]. Light, Science & Applications, 9, 15(2020).

    [29] Liu Y Q, Chen Z D, Han D D et al. Bioinspired soft robots based on the moisture-responsive graphene oxide[J]. Advanced Science, 8, 2002464(2021).

    [30] Zhang Y L, Ma J N, Liu S et al. A “Yin”-“Yang” complementarity strategy for design and fabrication of dual-responsive bimorph actuators[J]. Nano Energy, 68, 104302(2020).

    [31] Zhang Y L, Liu Y Q, Han D D et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers[J]. Advanced Materials, 31, e1901585(2019).

    [32] Xu B B, Wang L, Ma Z C et al. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate[J]. ACS Nano, 8, 6682-6692(2014).

    [33] Bai S, Serien D, Hu A M et al. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances[J]. Advanced Functional Materials, 28, 1706262(2018).

    [34] Ran P, Jiang L, Li X et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 15, e1804899(2019).

    [35] Lao Z X, Zheng Y Y, Dai Y C et al. Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS[J]. Advanced Functional Materials, 30, 1909467(2020).

    [36] Dhanumalayan E, Joshi G M. Performance properties and applications of polytetrafluoroethylene (PTFE): a review[J]. Advanced Composites and Hybrid Materials, 1, 247-268(2018).

    [37] Xu Z, Wang L, Yu C M et al. In situ separation of chemical reaction systems based on a special wettable PTFE membrane[J]. Advanced Functional Materials, 28, 1703970(2018).

    [38] Xue X Y, Fu Y M, Wang Q et al. Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin[J]. Advanced Functional Materials, 26, 3128-3138(2016).

    Xufei Liu, Dan'ao Han, Hui Guo, Yonglai Zhang. Surface Enhanced Raman Scattering Substrates Based on Femtosecond Laser Structured Polytetrafluoroethylene[J]. Laser & Optoelectronics Progress, 2021, 58(23): 2314011
    Download Citation