• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 4, 417 (2020)
Yu-Ling TANG, Shao-Jie XIA, and Jun CHEN*
Author Affiliations
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.04.004 Cite this Article
    Yu-Ling TANG, Shao-Jie XIA, Jun CHEN. High responsivity Si-based near-infrared photodetector with surface microstructure[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 417 Copy Citation Text show less
    References

    [1] M Casalino, L Sirleto, L Monetti. A silicon compatible resonant cavity enhanced photodetector working at 1.55μm. Semiconductor Science & Technology, 23, 075001(2008).

    [2] M Aamer, A M Gutierrez, A Brimont. CMOS Compatible Silicon-on-Insulator Polarization Rotator Based on Symmetry Breaking of the Waveguide Cross Section. IEEE Photonics Technology Letters, 24, 2031-2034(2012).

    [4] Z Y Ni, L L Ma, S C Du. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors. ACS Nano, 11, 9854-9862(2017).

    [5] J S Miao, W D Hu, Y L Jing. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small, 11, 2392-2398(2015).

    [6] J Liang, W D Hu, Z H Ye. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure. . APPl. Phys, 115, 184504(2014).

    [8] T H Her, R J Finlay, C Wu. Microstructuring of silicon with femtosecond laser pulses. Applied Physics Letters, 73, 1673-1675(1998).

    [9] Y L Yin, R Cao, J S Guo. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetector at 2 um. Laser & Photonics Reviews, 13, 1900032(2019).

    [10] B Desiatov, I Goykhman, N Mazurski. Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime. Optica, 2, 335-338(2015).

    [11] L P Hackett, M A Seyedi, M Fiorentino. Large-area silicon nanowire Schottky junction photodetector with tunable absorption and low junction capacitance. Journal of Physics D: Applied Physics, 50, 215105(2017).

    [12] F Hu, X Y Dai, Z Q Zhou. Black silicon Schottky photodetector in sub-bandgap near-infrared regime. Optics Express, 27, 3163-3168(2019).

    [13] M Leskela, M Mattinen, M Ritala. Review article: Atomic layer deposition of optoelectronic materials. Journal of vacuum Science & Technology B, 37, 030801(2019).

    [14] H Savin, P Repo, G Von Gastrow. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nature Nanotechnology, 10, 624-628(2015).

    [15] Bartolomeo A Di, G Luongo, F Giubileo. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect. 2D Materials, 4, 025075(2017).

    Yu-Ling TANG, Shao-Jie XIA, Jun CHEN. High responsivity Si-based near-infrared photodetector with surface microstructure[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 417
    Download Citation