• Laser & Optoelectronics Progress
  • Vol. 56, Issue 1, 011004 (2019)
Honglu Li1, Hongjie Liu2, Xiaodong Jiang2、*, Jin Huang2, and Linhong Cao1、**
Author Affiliations
  • 1 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621900, China
  • 2 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
  • show less
    DOI: 10.3788/LOP56.011004 Cite this Article Set citation alerts
    Honglu Li, Hongjie Liu, Xiaodong Jiang, Jin Huang, Linhong Cao. Subsurface Defects in Fused Silica Elements Detected by Fluorescence Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011004 Copy Citation Text show less
    References

    [1] Suratwala T, Wong L, Miller P et al. Sub-surface mechanical damage distributions during grinding of fused silica[J]. Journal of Non-Crystalline Solids, 352, 5601-5617(2006). http://www.sciencedirect.com/science/article/pii/S0022309306011471

    [2] Stevens-Kalceff M A, Wong J. Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser[J]. Journal of Applied Physics, 97, 113519(2005). http://scitation.aip.org/content/aip/journal/jap/97/11/10.1063/1.1922591

    [3] Wang Y J, Hu H Y, Li Q G et al. Study of weak absorption of the thin films coated on the S plates[J]. Chinese Journal of Lasers, 28, 937-940(2001).

    [4] Cui H, Liu S J, Zhao Y A et al. Study on total internal reflection microscopy for subsurface damage[J]. Acta Optica Sinica, 34, 0612004(2014).

    [5] Xiang Z, Nie C J, Ge J H et al. Eliminating of subsurface damage structure[J]. High Power Laser and Particle Beams, 19, 373-376(2007).

    [6] Norton M A, Hrubesh L W, Wu Z L et al. Growth of laser-initiated damage in fused silica at 351 nm[J]. Proceedings of SPIE, 4347, 468-469(2001). http://spie.org/Publications/Proceedings/Paper/10.1117/12.425055

    [7] Xu S Z, Lü H B, Tian D B et al. Effects of acid-etching depth on 355 nm laser-induced damage threshold of fused silica[J]. High Power Laser and Particle Beams, 20, 760-764(2008).

    [8] Suratwala T, Steele R, Feit M D et al. Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing[J]. Journal of Non-Crystalline Solids, 354, 2023-2037(2008). http://www.opticsinfobase.org/abstract.cfm?uri=OFT-2006-OFTuD1

    [9] Hobbs D S. MacLeod B D, Riccobono J R. Update on the development of high performance anti-reflecting surface relief micro-structures[J]. Proceedings of SPIE, 6545, 65450Y(2007).

    [10] Li Y F, Zhang J H, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 5, 117-127(2010). http://www.sciencedirect.com/science/article/pii/S1748013210000307

    [11] Wang X D, Liao Y L, Liu B et al. Free-standing SU-8 subwavelength gratings fabricated by UV curing imprint[J]. Microelectronic Engineering, 85, 910-913(2008). http://www.sciencedirect.com/science/article/pii/S0167931707008167

    [12] Ma W H, Zhang M S, Shun L et al. Raman-spectroscopy study of PbTiO3 thin films grown on Si substrates by metalorganic chemical vapor deposition[J]. Applied Physics A: Materials Science & Processing, 62, 281-284(1996). http://link.springer.com/article/10.1007/BF01575095

    [13] Jiang P. McFarland M J. Wafer-scale periodic nanohole arrays templated from two-dimensional nonclose-packed colloidal crystals[J]. Journal of the American Chemical Society, 127, 3710-3711(2005). http://europepmc.org/abstract/MED/15771501

    [14] Sun C H, Gonzalez A, Linn N C et al. Templated biomimetic multifunctional coatings[J]. Applied Physics Letters, 92, 051107(2008).

    [15] Kamimura T, Akamatsu S, Horibe H et al. Enhancement of surface-damage resistance by removing subsurface damage in fused silica and its dependence on wavelength[J]. Japanese Journal of Applied Physics, 43, L1229-L1231(2004). http://www.onacademic.com/detail/journal_1000036248942310_027d.html

    [16] Seeger K, Palmer R E. Fabrication of silicon cones and pillars using rough metal films as plasma etching masks[J]. Applied Physics Letters, 74, 1627-1629(1999). http://scitation.aip.org/content/aip/journal/apl/74/11/10.1063/1.123638

    [17] Schulze M, Fuchs H J, Kley E B et al. New approach for antireflective fused silica surfaces by statistical nanostructures[J]. Proceedings of SPIE, 6883, 68830N(2008). http://spie.org/Publications/Proceedings/Paper/10.1117/12.767778

    [18] Zou G J, Zhang B F, Li C X et al. Chaotic photonic compressed sampling based on optoelectronic oscillator[J]. Chinese Journal of Lasers, 44, 1106002(2017).

    [19] Ye X, Jiang X D, Huang J et al. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching[J]. Scientific Reports, 5, 013023(2015). http://www.nature.com/articles/srep13023

    [20] Ding J W, Liang B M, Jiang Q et al. Phase characteristic of near zero refractive index material and its application[J]. Laser & Optoelectronics Progress, 54, 031603(2017).

    [21] Trost M, Herffurth T, Schmitz D et al. Evaluation of subsurface damage by light scattering techniques[J]. Applied Optics, 52, 6579-6588(2013). http://www.ncbi.nlm.nih.gov/pubmed/24085136

    [22] Neauport J, Ambard C, Cormont P et al. Subsurface damage measurement of ground fused silica parts by HF etching techniques[J]. Optics Express, 17, 20448-20456(2009). http://europepmc.org/abstract/MED/19997273

    [23] Williams W B, Mullany B A, Parker W C et al. Using quantum dots to tag subsurface damage in lapped and polished glass samples[J]. Applied Optics, 48, 5155-5163(2009). http://www.ncbi.nlm.nih.gov/pubmed/19767933

    Honglu Li, Hongjie Liu, Xiaodong Jiang, Jin Huang, Linhong Cao. Subsurface Defects in Fused Silica Elements Detected by Fluorescence Imaging Technology[J]. Laser & Optoelectronics Progress, 2019, 56(1): 011004
    Download Citation