• Laser & Optoelectronics Progress
  • Vol. 52, Issue 12, 120102 (2015)
Lin Hong*, Zhou Chuanlin, Zhao Na, and Huang Panli
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.120102 Cite this Article Set citation alerts
    Lin Hong, Zhou Chuanlin, Zhao Na, Huang Panli. Wavelength Choice for Infrared Laser Based on Atmospheric CO2 Concentration Wide Spectrum Measurement[J]. Laser & Optoelectronics Progress, 2015, 52(12): 120102 Copy Citation Text show less
    References

    [1] G J Koch, J Y Beyon, F Gibert, et al.. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: Design and application to atmospheric measurements[J]. Appl Opt, 2008, 47(7): 944-956.

    [2] G J Koch, B W Barnes, M Petros, et al.. Coherent differential absorption lidar measurements of CO2[J]. Appl Opt, 2004, 43 (26): 5092-5099.

    [3] S Kameyama, M Imaki, Y Hirano, et al.. Development of 1.6 m continuous- wave modulation hard- target differential absorption lidar system for CO2 sensing[J]. Opt Lett, 2009, 34(10): 1513-1515.

    [4] Aamediek, A Fix, G Ehret, et al.. Airborne lidar reflectance measurements at 1.57 μm in support of the A-SCOPE mission for atmospheric CO2[J]. Atmos Meas Tech, 2009, 2(2): 1487-1536.

    [5] J Mao, S R Kawa. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Appl Opt, 2004, 43(4): 914-927.

    [6] Ma Xin, Lin Hong, Ma Yingying, et al.. Atmospheric pressure broadening correction algorithm of differential absorption atmospheric CO2 lidar[J]. Acta Optica Sinica, 2012, 32(11): 1101003.

    [7] Li Jun, Gong Wei, Mao Feiyue, et al.. Dual field of view lidar for observing atmospheric aerosols over Wuhan[J]. Acta Optica Sinica, 2013, 33(12): 1201001.

    [8] Ge Han, Wei Gong, Hong Lin, et al.. On-line wavelength calibration of pulsed laser for CO2 DIAL sensing[J]. Applied Physics B, 2014, 117(4): 1041-1053.

    [9] Cao Nianwen, Yan Peng. Aerosol classifications method by lidar measurements[J]. Acta Optica Sinica, 2014, 34(11): 1101003.

    [10] Wang Ran, Gao Chunqing. Progress of 1.6 μm region single-frequency lasers[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080006.

    [11] E M Georgieva, W S Heaps, Emily L Wilson. Differential radiometers using Fabry-Perot interferometric technique for remote sensing of greenhouse gases[J]. IEEE Transactions on Geoscienceand Remote sensing, 2008, 46(10): 3115-3122.

    [12] W S Heaps. Broadband lidar technique for precision CO2 measurement[C]. SPIE, 2008, 7111(711102): 1-9.

    [13] Guo Liang, Chen Hongwei, Wang Zefeng, et al.. Experimental study on the generation of cladding light in passive doubleclad fiber[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020602.

    [14] Cheng Jie, Fu Yanfeng, Gong Wei. 1572 nm high power tunable laser source for atmospheric CO2 measurement[J]. Laser Technology, 2012, 36(4): 463-466.

    [15] Qin Fengjie, Tan Zhongwei, Ning Tigang. Research of the influence of bandwidth of light source on the optical correlator based on fiber dispersion[J]. Acta Optica Sinica, 2013, 33(10): 1006004.

    CLP Journals

    [1] Xiong Shifu, Fu Xiuhua, Liu Dongmei, Zhang Jing, Fan Jiachen. Study and Fabrication of Narrow-Band Filter Film in Methane Gas Detection and Recognition System[J]. Chinese Journal of Lasers, 2017, 44(3): 303003

    Lin Hong, Zhou Chuanlin, Zhao Na, Huang Panli. Wavelength Choice for Infrared Laser Based on Atmospheric CO2 Concentration Wide Spectrum Measurement[J]. Laser & Optoelectronics Progress, 2015, 52(12): 120102
    Download Citation