• Photonic Sensors
  • Vol. 9, Issue 4, 293 (2019)
Min GUO, Ke CHEN*, Zhenfeng GONG, and Qingxu YU
Author Affiliations
  • School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.1007/s13320-019-0545-x Cite this Article
    Min GUO, Ke CHEN, Zhenfeng GONG, Qingxu YU. Trace Ammonia Detection Based on Near-Infrared Fiber-Optic Cantilever-Enhanced Photoacoustic Spectroscopy[J]. Photonic Sensors, 2019, 9(4): 293 Copy Citation Text show less
    References

    [1] X. F. Niu, Y. B. Zhong, R. Chen, F. Wang, and D. Luo, “Highly sensitive and selective liquid crystal optical sensor for detection of ammonia,” Optics Express, 2017, 25(12): 13549-13556.

    [2] M. J. Thorpe, B. C. David, M. S. Kirchner, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis,” Optics Express, 2008, 16(4): 2387-2397.

    [3] M. Pisco, M. Consales, S. Campopiano, R. Viter, V. Smyntyna, M. Giordano, et al., “A novel optochemical sensor based on SnO2 sensitive thin film for ppm ammonia detection in liquid environment,” Journal of Lightwave Technology, 2006, 24(12): 5000-5007.

    [4] L. Dong, J. Wright, B. Peters, B. A. Ferguson, F. K. Tittel, and S. M. Whorter, “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen,” Applied Physics B, 2012, 107(2): 459-467.

    [5] Q. Wang, Z. Wang, and W. Ren, “Theoretical and experimental investigation of fiber-ring laser intracavity photoacoustic spectroscopy (FLI-PAS) for acetylene detection,” Journal of Lightwave Technology, 2006, 35(20): 4519-4525.

    [6] J. W. Wang, W. Zhang, L. Li, and Q. Yu, “Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy,” Applied Physics B, 2011, 103(2): 263-269.

    [7] K. Chen, Z. F. Gong, and Q. X. Yu, “Fiber-amplifier-enhanced resonant photoacoustic sensor for sub-ppb level acetylene detection,” Sensors and Actuators A: Physical, 2018, 274: 184-188.

    [8] M. E. Webber, M. Pushkarsky, and C. K. Patel, “Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers,” Applied Optics, 2003, 42(12): 2119-2126.

    [9] A. A. Kosterev, Y. A. Bakhirkin, R. F. Curl, and F. Tittel, “Quartz-enhanced photoacoustic spectroscopy,” Optics Letters, 2002, 27(21): 1902-1904.

    [10] L. K. Guo, X. Y. Guo, H. M. Yi, W. D. Chen, W. J. Zhang, and X. M. Gao, “Off-beam quartz-enhanced photoacoustic spectroscopy,” Optics Letters, 2009, 34(10): 1594-1596.

    [11] S. Borri, P. Patimisco, I. Galli, D. Mazzotti, G. Giusfredi, N. Akikusa, et al., “Intracavity quartz-enhanced photoacoustic sensor,” Applied Physics Letters, 2014, 104(9): 091114-1-091114-4.

    [12] Y. C. Cao, W. Jin, H. L. Ho, and J. Ma, “Miniature fiber-tip photoacoustic spectrometer for trace gas detection,” Optics Letters, 2013, 38(4): 434-436.

    [13] X. F. Mao, X. L. Zhou, Z. F. Gong, and Q. X. Yu, “An all-optical photoacoustic spectrometer for multi-gas analysis,” Sensors and Actuators B: Chemical, 2016, 232: 251-256.

    [14] Y. Z. Tan, C. Z. Zhang, W. Jin, F. Yang, H. L. Ho, and J. Ma, “Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 199-209.

    [15] Z. F. Gong, K. Chen, Y. Yang, X. L. Zhou, W. Peng, and Q. X. Yu, “High-sensitivity fiber-optic acoustic sensor for photoacoustic spectroscopy based traces gas detection,” Sensors and Actuators B: Chemical, 2017, 247: 290-295.

    [16] V. Koskinen, J. Fonsen, K. Roth, and J. Kauppinen, “Progress in cantilever enhanced photoacoustic spectroscopy,” Vibrational Spectroscopy, 2008, 48(1): 16-21.

    [17] J. Peltola, T. Hieta, and M. Vainio, “Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy,” Optics Letters, 2015, 40(13): 2933-2936.

    [18] H. Moser and B. Lendl, “Cantilever-enhanced photoacoustic detection of hydrogen sulfide (H2S) using NIR telecom laser sources near 1.6 μm,” Applied Physics B, 2016, 122(4): 83-1-83-11.

    [19] H. P. Wu, L. Dong, X. L. Liu, H. D. Zheng, X. K. Yin, W. G. Ma, et al., “Fiber-amplifier-enhanced QEPAS sensor for simultaneous trace gas detection of NH3 and H2S,” Sensors, 2015, 15(10): 26743-26755.

    [20] Y. F. Ma, Y. He, Y. Tong, X. Yu, and F. K. Tittel, “Ppb-level detection of ammonia based on QEPAS using a power amplified laser and a low resonance frequency quartz tuning fork,” Optics Express, 2017, 25(23): 29356-29364.

    [21] J. Kauppinen, K. Wilcken, I. Kauppinen, and V. Koskinen, “High sensitivity in gas analysis with photoacoustic detection,” Microchemical Journal, 2004, 76(1): 151-159.

    [22] Q. X. Yu and X. L. Zhou, “Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer,” Photonic Sensors, 2011, 1(1): 72-83.

    [23] K. Chen, X. L. Zhou, B. K. Yang, W. Peng, and Q. X. Yu, “A hybrid fiber-optic sensing system for down-hole pressure and distributed temperature measurements,” Optics & Laser Technology, 2015, 35: 82-87.

    [24] X. F. Mao, X. L. Zhou, and Q. X. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Optics Communications, 2016, 361: 17-20.

    [25] X. F. Mao, S. Z. Yuan, P. C. Zheng, and P. C. Zheng, “Stabilized fiber-optic Fabry–Perot acoustic sensor based on improved wavelength tuning technique,” Journal of Lightwave Technology, 2017, 73(11): 2311-2314.

    [26] M. Hippler, C. Mohr, K. A. Keen, and E. D. M. Naghten, “Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: a novel technique for ultratrace gas analysis and high-resolution spectroscopy,” The Journal of Chemical Physics, 2010, 133(4): 289-297.

    [27] A. Boschetti, D. Bassi, E. Iacob, and S. Iannaotta, “Resonant photoacoustic simultaneous detection of methane and ethylene by means. of a 1.63-μm diode laser,” Applied Physics B, 2002, 74(3): 273-278.

    [28] J. W. Wang, W. Zhang, L. R. Liang, and Q. X. Yu, “Tunable fiber laser based photoacoustic spectrometer for multi-gas analysis,” Sensors and Actuators B: Chemical, 2011, 160(1): 1268-1272.

    [29] K. Chen, Q. X. Yu, Z. F. Gong, M. Guo, and C. Qu, “Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy,” Sensors and Actuators B: Chemical, 2018, 268: 205-209.

    [30] K. Chen, Z. H. Yu, Z. F. Gong, and Q. X. Yu, “Lock-in white-light-interferometry-based all-optical photoacoustic spectrometer,” Optics Letters, 2018, 43(20): 5038-5041.

    [31] D. Viveiros, J. Ferreira, S. O. Silva, J. Ribero, D. Flores, J. L. Santos, et al., “Ammonia sensing system based on wavelength modulation spectroscopy,” Photonic Sensors, 2015, 5(2): 109–115.

    [32] K. Chen, Z. F. Gong, M. Guo, S. C. Yu, C. Qu, X. L. Zhou, et al., “Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone,” Sensors and Actuators A: Physical, 2018, 279: 107-112.

    [33] K. Chen, Z. H. Yu, Q. X. Yu, M. Guo, Z. H. Zhao, C. Qu, et al., “Fast demodulated white-light interferometry-based fiber-optic Fabry–Perot cantilever microphone,” Optics Letters, 2018, 43(14): 3417-3420.

    [34] Z. H. Yu and A. B. Wang, “Fast white light interferometry demodulation algorithm for low-finesse Fabry-Pérot sensors,” IEEE Photonics Technology Letters, 2015, 27(8): 817-820.

    [35] Z. F. Gong, K. Chen, X. L. Zhou, Y. Yang, Z. H. Zhao, H. L. Zou, et al., “High-sensitivity Fabry-Perot interferometric acoustic sensor for low-frequency acoustic pressure detections,” Journal of Lightwave Technology, 2017, 35(24): 5276-5279.

    [36] S. Zhou, M. Slaman, and D. Iannuzzi, “Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor,” Optics Express, 2017, 25(15): 17541-17548.

    [37] H. P. Wu, L. Dong, H. D. Zheng, Y. J. Yu, W. G. Ma, L. Zhang, et al., “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring,” Nature Communications, 2017, 8: 15331-1-15331-8.

    [38] B. D. Adamson, J. E. Sader, and E. J. Bieske, “Photoacoustic detection of gases using microcantilevers,” Journal of Applied Physics, 2009, 106: 114510-1-114510-4.

    Min GUO, Ke CHEN, Zhenfeng GONG, Qingxu YU. Trace Ammonia Detection Based on Near-Infrared Fiber-Optic Cantilever-Enhanced Photoacoustic Spectroscopy[J]. Photonic Sensors, 2019, 9(4): 293
    Download Citation