• Journal of Semiconductors
  • Vol. 45, Issue 1, 012502 (2024)
Guang Yang1、3, Lingbo Xu1、3, Can Cui1、*, Xiaodong Pi2、3、**, Deren Yang2、3, and Rong Wang2、3、***
Author Affiliations
  • 1Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • 2State Key Laboratory of Silicon and Advanced Semiconductor Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China
  • show less
    DOI: 10.1088/1674-4926/45/1/012502 Cite this Article
    Guang Yang, Lingbo Xu, Can Cui, Xiaodong Pi, Deren Yang, Rong Wang. Anisotropic etching mechanisms of 4H-SiC: Experimental and first-principles insights[J]. Journal of Semiconductors, 2024, 45(1): 012502 Copy Citation Text show less
    References

    [1] A Itoh, H Matsunami. Single crystal growth of SiC and electronic devices. Crit Rev Solid State Mater Sci, 22, 111(1997).

    [2] J J Li, G Yang, X S Liu et al. Dislocations in 4H silicon carbide. J Phys D:Appl Phys, 55, 463001(2022).

    [3] S Yang, X W Liang, J W Cui et al. Impact of switching frequencies on the TID response of SiC power MOSFETs. J Semicond, 42, 082802(2021).

    [4] A A Lebedev, G A Oganesyan, V V Kozlovski et al. Radiation defects in heterostructures 3C-SiC/4H-SiC. Crystals, 9, 115(2019).

    [5] J B Casady, R W Johnson. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review. Solid State Electron, 39, 1409(1996).

    [6] T Kimoto, H Watanabe. Defect engineering in SiC technology for high-voltage power devices. Appl Phys Express, 13, 120101(2020).

    [7] A Grekov, Q C Zhang, H Fatima et al. Effect of crystallographic defects on the reverse performance of 4H–SiC JBS diodes. Microelectron Reliab, 48, 1664(2008).

    [8] W D Gao, G Yang, Y X Qian et al. Dislocation-related leakage-current paths of 4H silicon carbide. Front Mater, 10, 1022878(2023).

    [9] M Skowronski. Degradation of hexagonal silicon carbide-based bipolar devices. 2005 International Semiconductor Device Research Symposium, 138(2006).

    [10] H Z Song, T S Sudarshan. Basal plane dislocation conversion near the epilayer/substrate interface in epitaxial growth of 4° off-axis 4H–SiC. J Cryst Growth, 371, 94(2013).

    [11] G Yang, H Luo, J J Li et al. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits. J Semicond, 43, 122801(2022).

    [12] H Luo, J J Li, G Yang et al. Electronic and optical properties of threading dislocations in n-type 4H-SiC. ACS Appl Electron Mater, 4, 1678(2022).

    [13] J Y Yu, X L Yang, Y Peng et al. Revelation of the dislocations in the C-face of 4H-SiC substrates using a microwave plasma etching treatment. CrystEngComm, 23, 353(2021).

    [14] Y Z Yao, Y Ishikawa, K Sato et al. Dislocation revelation from (0001) carbon-face of 4H-SiC by using vaporized KOH at high temperature. Appl Phys Express, 5, 075601(2012).

    [15] M Syväjärvi, R Yakimova, E Janzén. Anisotropic etching of SiC. J Electrochem Soc, 147, 3519(2000).

    [16] M Katsuno, N Ohtani, J Takahashi et al. Mechanism of molten KOH etching of SiC single crystals: Comparative study with thermal oxidation. Jpn J Appl Phys, 38, 4661(1999).

    [17] T Hatayama, T Shimizu, H Yano et al. Anisotropic etching of SiC in the mixed gas of chlorine and oxygen. Mater Sci Forum, 600/601/602/603, 659(2008).

    [18] J J Segovia, D Lozano-Martín, M C Martín et al. Updated determination of the molar gas constantRby acoustic measurements in argon at UVa-CEM. Metrologia, 54, 663(2017).

    [19] K Fukunaga, S D Jun, T Kimoto. Anisotropic etching of single crystalline SiC using molten KOH for SiC bulk micromachining. Proceedings of SPIE - The International Society for Optical Engineering, 6109, 6109(2006).

    [20] S Tengeler, B Kaiser, D Chaussende et al. (001) 3C SiC/Ni contact interface: in situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes. Appl Surf Sci, 400, 6(2017).

    [21] B J Wang, J H Yin, D H Chen et al. Optical and surface properties of 3C–SiC thin epitaxial films grown at different temperatures on 4H–SiC substrates. Superlattices Microstruct, 156, 106960(2021).

    [22] A T S Wee, Z C Feng, H H Hng et al. Surface chemical states on 3C-SiC/Si epilayers. Appl Surf Sci, 81, 377(1994).

    [23] Y X Cui, X B Hu, X J Xie et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method. CrystEngComm, 20, 978(2018).

    [24] G Kresse, J Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 54, 11169(1996).

    [25] G Kresse, J Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 6, 15(1996).

    [26] P E Blöchl. Projector augmented-wave method. Phys Rev B Condens Matter, 50, 17953(1994).

    [27] J P Perdew, K Burke, M Ernzerhof. Generalized gradient approximation made simple. Phys Rev Lett, 77, 3865(1996).

    [28] J Heyd, G E Scuseria, M Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 118, 8207(2003).

    [29] J Z Zhang, Y O Zhang, K Tse et al. New approaches for calculating absolute surface energies of wurtzite (0001)/(0001¯): A study of ZnO and GaN. J Appl Phys, 119, 205302(2016).

    [30] Y O Zhang, J Z Zhang, K Tse et al. Pseudo-hydrogen passivation: A novel way to calculate absolute surface energy of zinc blende (111)/(1¯1¯1¯) surface. Sci Rep, 6, 20055(2016).

    [31] W B Li, J J Zhao, Q Z Zhu et al. Insight into the initial oxidation of 4H-SiC from first-principles thermodynamics. Phys Rev B, 87, 085320(2013).

    Guang Yang, Lingbo Xu, Can Cui, Xiaodong Pi, Deren Yang, Rong Wang. Anisotropic etching mechanisms of 4H-SiC: Experimental and first-principles insights[J]. Journal of Semiconductors, 2024, 45(1): 012502
    Download Citation