• Opto-Electronic Engineering
  • Vol. 45, Issue 9, 180151 (2018)
Wang Chao1、2, Huang Heyong1, Meng Donghui3, Zhang Jingchuan3, Ho Hoi Lut2, and Jin Wei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2018.180151 Cite this Article
    Wang Chao, Huang Heyong, Meng Donghui, Zhang Jingchuan, Ho Hoi Lut, Jin Wei. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151 Copy Citation Text show less
    References

    [1] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358–362.

    [2] Poletti F, Wheeler N V, Petrovich M N, et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 2013, 7(4): 279–284.

    [3] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537–1539.

    [4] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5–6): 315–340.

    [5] Poletti F. Hollow core fiber with an octave spanning bandgap[J]. Optics Letters, 2010, 35(17): 2837–2839.

    [6] Hollow-core photonic bandgap fiber (model HC-1550) datasheet from website of NKT Photonics Corporation[OL]. https://www.nktphotonics.com/lasers-fibers/product/hollow-core -photonic-crystal-fibers/.

    [7] Roberts P J, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236–244.

    [8] Petrovich M N, Poletti F, Van Brakel A, et al. Robustly single mode hollow core photonic bandgap fiber[J]. Optics Express, 2008, 16(6): 4337–4346.

    [9] Digonnet M J F, Kim H K, Kino G S, et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers[ J]. Journal of Lightwave Technology, 2006, 23(12): 4169–4177.

    [10] Fini J M, Nicholson J W, Mangan B, et al. Polarization maintaining single-mode low-loss hollow-core fibres[J]. Nature Communications, 2014, 5: 5085.

    [11] Kim H K, Shin J, Fan S H, et al. Designing air-core photonic- bandgap fibers free of surface modes[J]. IEEE Journal of Quantum Electronics, 2004, 40(5): 551–556.

    [12] West J A, Smith C M, Borrelli N F, et al. Surface modes in air-core photonic band-gap fibers[J]. Optics Express, 2004, 12(8): 1485–1496.

    [13] Yang F, Jin W, Cao Y C, et al. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers[J]. Optics Express, 2014, 22(20): 24894–24907.

    [14] Fini J M, Nicholson J W, Windeler R S, et al. Low-loss hollow- core fibers with improved single-modedness[J]. Optics Express, 2013, 21(5): 6233–6242.

    [15] Wegmuller M, Legré M, Gisin N, et al. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm[J]. Optics Express, 2005, 13(5): 1457–1467.

    [16] Poletti F, Broderick N G R, Richardson D J, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers[J]. Optics Express, 2005, 13(22): 9115–9124.

    [17] Bouwmans G, Luan F, Knight J C, et al. Properties of a hollow- core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express, 2003, 11(14): 1613–1620.

    [18] Wen H, Terrel M A, Kim H K, Digonnet M J F, Fan S, Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber[J]. Journal of Lightwave Technology, 2009, 27(15): 3194–3101.

    [19] Alam M S, Saitoh K, Koshiba M. High group birefringence in air-core photonic bandgap fibers[J]. Optics Letters, 2005, 30(8): 824–826.

    [20] Roberts P J, Williams D P, Sabert H, et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber[J]. Optics Express, 2006, 14(16): 7329–7341.

    [21] Hansen T P, Broeng J, Jakobsen C, et al. Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling[J]. Journal of Lightwave Technology, 2004, 22(1): 11–15.

    [22] Wheeler N V, Heidt A M, Baddela N K, et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow- core–photonic-bandgap fiber[J]. Optics Letters, 2014, 39(2): 295–298.

    [23] Slavík R, Marra G, Fokoua E N, et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres[ J]. Scientific Reports, 2015, 5: 15447.

    [24] Dangui V, Kim H K, Digonnet M J F, et al. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic- bandgap fibers[J]. Optics Express, 2005, 13(18): 6669–6684.

    [25] Jones D C, Bennett C R, Smith M A, et al. High-power beam transport through a hollow-core photonic bandgap fiber[J]. Optics Letters, 2014, 39(11): 3122–3125.

    [26] Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767.

    [27] Hoo Y L, Jin W, Ho H L, et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 2005, 105(2): 183–186.

    [28] Ritari T, Tuominen J, Ludvigsen H, et al. Gas sensing using air-guiding photonic bandgap fibers[J]. Optics Express, 2004, 12(17): 4080–4087.

    [29] Magalhaes F, Carvalho J P, Ferreira L A, et al. Methane detection system based on wavelength modulation spectroscopy and hollow-core fibres[C]//Proceedings of 2008 IEEE SENSORS, 2008: 1277–1280.

    [30] Parry J P, Griffiths B C, Gayraud N, et al. Towards practical gas sensing with micro-structured fibres[J]. Measurement Science and Technology, 2009, 20(7): 075301.

    [31] Wynne R M, Barabadi B, Creedon K J, et al. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor[ J]. Journal of Lightwave Technology, 2009, 27(11): 1590–1596.

    [32] Nwaboh J A, Hald J, Lyngs J K, et al. Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm[J]. Applied Physics B, 2013, 110(2): 187–194.

    [33] Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[ J]. Nature, 2005, 434(7032): 488–491.

    [34] Xiao L M, Demokan M S, Jin W, et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. Journal of Lightwave Technology, 2007, 25(11): 3563–3574.

    [35] Benabid F. Photonic microcells[C]//Proceedings of Advanced Photonics Congress, 2012.

    [36] Hoo Y L, Liu S J, Ho H L, et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 296–298.

    [37] Lehmann H, Brueckner S, Kobelke J, et al. Toward photonic crystal fiber based distributed chemosensors[J]. Proceedings of the SPIE, 2005, 5855: 419–422.

    [38] Li X F, Liang J X, Oigawa H, et al. Doubled optical path length for photonic bandgap fiber gas cell using micromirror[J]. Japanese Journal of Applied Physics, 2011, 50(6): 06GM01.

    [39] van Brakel A, Grivas C, Petrovich M N, et al. Micro-channels machined in microstructured optical fibers by femtosecond laser[ J]. Optics Express, 2007, 15(14): 8731–8736.

    [40] Yang F, Jin W, Lin Y C, et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 2017, 35(16): 3413–3424.

    [41] Lin Y C, Wei J, Yang F, et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[ J]. Scientific Reports, 2016, 6: 39410.

    [42] Tan Y Z, Jin W, Yang F, et al. Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection[J]. Journal of Lightwave Technology, 2017, 35(14): 2887–2893.

    [43] Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550 nm hollow-core fiber[ C]//Proceedings of 25th Optical Fiber Sensors Conference (OFS), 2017: 4.

    [44] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601–8639.

    [45] Jin W, Ho H L, Cao Y C, et al. Gas detection with micro- and nano-engineered optical fibers[J]. Optical Fiber Technology, 2013, 19(6): 741–759.

    [46] Lin Y C, Liu F, He X G, et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics Express, 2017, 25(25): 31568–31585.

    [47] Xiao L M, Jin W, Demokan M S, et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Optics Express, 2005, 13(22): 9014–9022.

    [48] Cordeiro C M B, dos Santos E M, Cruz C H B, et al. Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications[J]. Optics Express, 2006, 14(18): 8403–8412.

    [49] Huang Y Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique[J]. Applied Physics Letters, 2004, 85(22): 5182–5184.

    [50] Bozolan A, Gerosa R M, de Matos C J S, et al. Temperature sensing using colloidal-core photonic crystal fiber[J]. IEEE Sensors Journal, 2012, 12(1): 195–200.

    [51] Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber[J]. Applied Physics Letters, 2004, 85(12): 2181–2183.

    [52] Yan D, Popp J, Pletz M W, et al. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers[J]. ACS Photonics, 2017, 4(1): 138–145.

    [53] Xuan H F, Jin W, Ju W, et al. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors[J]. Proceedings of SPIE, 2007, 6619: 661936.

    [54] de Matos C J S, Cordeiro C M B, dos Santos E M, et al. Liquid- core, liquid-cladding photonic crystal fibers[J]. Optics Express, 2007, 15(18): 11207–11212.

    [55] Wang Y P, Tan X L, Jin W, et al. Improved bending property of half-filled photonic crystal fiber[J]. Optics Express, 2010, 18(12): 12197–12202.

    [56] Pang M, Xuan H F, Ju J, et al. Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers[J]. Optics Express, 2010, 18(13): 14041–14055.

    [57] Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber[J]. Optics Express, 2009, 17(13): 11088–11097.

    [58] Yang F, Jin W, Ho H L, et al. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers[J]. Optics Express, 2013, 21(13): 15514–15521.

    [59] Wang Y P, Jin W, Ju J, et al. Long period gratings in air-core photonic bandgap fibers[J]. Optics Express, 2008, 16(4): 2784–2790.

    [60] Iadicicco A, Ranjan R, Campopiano S. Fabrication and characterization of long-period gratings in hollow core fibers by electric arc discharge[J]. IEEE Sensors Journal, 2015, 15(5): 3014–3020.

    [61] Xuan H F, Jin W, Ju J, et al. Hollow-core photonic bandgap fiber polarizer[J]. Optics Letters, 2008, 33(8): 845–847.

    [62] Xuan H F, Jin W, Zhang M, et al. In-fiber polarimeters based on hollow-core photonic bandgap fibers[J]. Optics Express, 2009, 17(15): 13246–13254.

    [63] Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461–465.

    [64] Digonnet M, Blin S, Kim H K, et al. Sensitivity and stability of an air-core fiber-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089–3097.

    [65] Ying D, Demokan M S, Zhang X, et al. Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation[ J]. Applied Optics, 2010, 49(3): 529–535.

    Wang Chao, Huang Heyong, Meng Donghui, Zhang Jingchuan, Ho Hoi Lut, Jin Wei. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151
    Download Citation