• Laser & Optoelectronics Progress
  • Vol. 61, Issue 23, 2313002 (2024)
Suyi Zhao, Hongzhi Yang, Sifei Chen, Ruizhi Yi..., Ziyue Zhang, Yang Xie, Zhongyuan Fu and Lin Xiao*|Show fewer author(s)
Author Affiliations
  • China Academy of Aerospace Science and Innovation, China Aerospace Science and Technology Corporation, Beijing 100176, China
  • show less
    DOI: 10.3788/LOP240807 Cite this Article Set citation alerts
    Suyi Zhao, Hongzhi Yang, Sifei Chen, Ruizhi Yi, Ziyue Zhang, Yang Xie, Zhongyuan Fu, Lin Xiao. A Self-Starting Integrated Method for Multistate Microcavity Optical Frequency Comb Generation[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2313002 Copy Citation Text show less
    References

    [1] Newbury N R. Searching for applications with a fine-tooth comb[J]. Nature Photonics, 5, 186-188(2011).

    [2] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).

    [3] Pfeifle J, Brasch V, Lauermann M et al. Coherent terabit communications with microresonator Kerr frequency combs[J]. Nature Photonics, 8, 375-380(2014).

    [4] Newman Z L, Maurice V, Drake T et al. Architecture for the photonic integration of an optical atomic clock[J]. Optica, 6, 680-685(2019).

    [5] Zhang X L, Zhao Y J. Research progress of microresonator-based optical frequency combs[J]. Acta Optica Sinica, 41, 0823014(2021).

    [6] Kippenberg T J, Spillane S M, Vahala K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters, 93, 083904(2004).

    [7] Herr T, Brasch V, Jost J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).

    [8] Godey C, Balakireva I V, Coillet A et al. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes[J]. Physical Review A, 89, 063814(2014).

    [9] Chen R X, Shu H W, Shen B T et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos[J]. Nature Photonics, 17, 306-314(2023).

    [10] Lukashchuk A, Riemensberger J, Tusnin A et al. Chaotic microcomb-based parallel ranging[J]. Nature Photonics, 17, 814-821(2023).

    [11] Brasch V, Lucas E, Jost J D et al. Self-referenced photonic chip soliton Kerr frequency comb[J]. Light: Science & Applications, 6, e16202(2017).

    [12] Geng Y, Zhou H, Han X J et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs[J]. Nature Communications, 13, 1070(2022).

    [13] Geng Y, Huang X T, Cui W W et al. Terabit optical OFDM superchannel transmission via coherent carriers of a hybrid chip-scale soliton frequency comb[J]. Optics Letters, 43, 2406-2409(2018).

    [14] Dai J, Li X M, Liu A N et al. Low phase noise microwave signal generation based on soliton frequency comb in MgF2 microresonator[J]. Acta Optica Sinica, 42, 2007001(2022).

    [15] Shao W, Wang Y, Jia S W et al. Terabit FSO communication based on a soliton microcomb[J]. Photonics Research, 10, 2802-2808(2022).

    [16] Brasch V, Geiselmann M, Herr T et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).

    [17] Liu J Q, Huang G H, Wang R N et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits[J]. Nature Communications, 12, 2236(2021).

    [18] Zhang S Y, Silver J M, del Bino L et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 6, 206-212(2019).

    [19] Sun Z Y, Li Y, Bai B F et al. Silicon nitride-based Kerr frequency combs and applications in metrology[J]. Advanced Photonics, 4, 064001(2022).

    [20] Gong Z, Bruch A, Shen M H et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators[J]. Optics Letters, 43, 4366-4369(2018).

    [21] Karpov M, Guo H R, Kordts A et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator[J]. Physical Review Letters, 116, 103902(2016).

    [22] Wildi T, Brasch V, Liu J Q et al. Thermally stable access to microresonator solitons via slow pump modulation[J]. Optics Letters, 44, 4447-4450(2019).

    [23] Bao C Y, Xuan Y, Jaramillo-Villegas J A et al. Direct soliton generation in microresonators[J]. Optics Letters, 42, 2519-2522(2017).

    [24] Guo H, Karpov M, Lucas E et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).

    [25] Bao C Y, Xuan Y, Leaird D E et al. Spatial mode-interaction induced single soliton generation in microresonators[J]. Optica, 4, 1011-1015(2017).

    [26] Wang X Y, Xie P, Wang W Q et al. Program-controlled single soliton microcomb source[J]. Photonics Research, 9, 66-72(2020).

    [27] Zhang H Y, Lu L J, Chen J P et al. Program-controlled single soliton generation driven by the thermal-compensated avoided mode crossing[J]. Journal of Lightwave Technology, 41, 1801-1810(2023).

    [28] Zheng H M, Sun W, Ding X X et al. Programmable access to microresonator solitons with modulational sideband heating[J]. APL Photonics, 8, 126110(2023).

    [29] Coen S, Randle H G, Sylvestre T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).

    [30] Hansson T, Wabnitz S. Frequency comb generation beyond the Lugiato-Lefever equation: multi-stability and super cavity solitons[J]. Journal of the Optical Society of America B, 32, 1259-1266(2015).

    [31] Bao C Y, Yang C X. Mode-pulling and phase-matching in broadband Kerr frequency comb generation[J]. Journal of the Optical Society of America B, 31, 3074-3080(2014).

    [32] Yang W Q, Hou J, Wang Y B et al. Improvement and numerical calculation of split-step Fourier method in solving nonlinear schrdinger equation[J]. Acta Optica Sinica, 31, s100510(2011).

    [33] Yang Y K, Cheng J L, Wen Y J et al. Evolution and thermal self-stability analysis of optical frequency combs in silicon nitride microcavity[J]. Laser & Optoelectronics Progress, 60, 1106029(2023).

    Suyi Zhao, Hongzhi Yang, Sifei Chen, Ruizhi Yi, Ziyue Zhang, Yang Xie, Zhongyuan Fu, Lin Xiao. A Self-Starting Integrated Method for Multistate Microcavity Optical Frequency Comb Generation[J]. Laser & Optoelectronics Progress, 2024, 61(23): 2313002
    Download Citation