• Acta Optica Sinica
  • Vol. 36, Issue 5, 519002 (2016)
Ren Kun1、*, Liu Yali1, Ren Xiaobin2, and Fan Jingyang1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.0519002 Cite this Article Set citation alerts
    Ren Kun, Liu Yali, Ren Xiaobin, Fan Jingyang. Design of Multiple-Wavelength Frequency Conversion Device Based on Intensity Distribution[J]. Acta Optica Sinica, 2016, 36(5): 519002 Copy Citation Text show less
    References

    [1] Meenakshisundaram N, Pandiyan K, Kashyap R. A systematic approach for designing quasi-periodic optical superlattices using the Hadamard matrix[J]. Journal of Optics, 2014, 16(1): 015204.

    [2] Tehranchi A, Morandotti R, Kashyap R. Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings[J]. Optics Express, 2011, 19(23): 22528-22534.

    [3] Gui Shixin, Chang Jianhua, Yan Na, et al.. A compact and highly efficient intracavity frequency-doubled green laser based on periodically poled lithium niobate[J]. Chinese J Lasers, 2015, 42(11): 1102002.

    [4] Sheng Y, Ma D, Ren M, et al.. Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal[J]. Applied Physics Letters, 2011, 99(3): 031108.

    [5] Liao J, He J L, Liu H, et al.. Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3[J]. Applied Physics Letters, 2003, 82(19): 3159-3161.

    [6] Ma B Q, Ren M L, Ma D L, et al.. Multiple second-harmonic waves in a nonlinear photonic crystal with fractal structure[J]. Applied Physics B, 2013, 111(2): 183-187.

    [7] Mizuuchi K, Yamamoto K. Waveguide second-harmonic generation device with broadened flat quasi-phase-matching response by use of a grating structure with located phase shifts[J]. Optics Letters, 1998, 23(24): 1880-1882.

    [8] Li Zhi, Tan Huiming, Tian Yubing, et al.. All-solid-state multi-wavelength yellow laser intra-cavity SHG/SFG[J]. Acta Optica Sinica, 2014, 34(2): 0214001.

    [9] Ren K, Ren X, Liu Y, et al.. An efficient method for analyzing second harmonic generation with the consideration of pump depletion[J]. Journal of Modern Optics, 2015, 62(19): 1577-1582.

    [10] Zhao Gang, Jiang Xudong, Lv Xinjie, et al.. Four-wavelength near and mid-infrared optical parameter oscillator based on superlattice[J]. Chinese J Lasers, 2015, 42(5): 0502004.

    [11] Ren F F, Ye J, Lu H, et al.. Spectrum broadening of high-efficiency second harmonic generation in cascaded photonic crystal microcavities[J]. Optics Express, 2013, 21(1): 756-763.

    [12] Yang J, Hu X P, Xu P, et al.. Chirped-quasi-periodic structure for quasi-phase-matching[J]. Optics Express, 2010, 18(14): 14717-14723.

    [13] Liu H, Zhu S N, Zhu Y Y, et al.. Multiple-wavelength second-harmonic generation in aperiodic optical superlattices[J]. Applied Physics Letters, 2002, 81(18): 3326-3328.

    [14] Chen X, Wu F, Zeng X, et al.. Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice[J]. Physical Review A, 2004, 69(1): 013818.

    [15] Lu M, Chen X F, Chen Y P, et al.. Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching[J]. Applied optics, 2007, 46(19): 4138-4143.

    [16] Zhao L M, Zhou Y S, Zhao J. Tunable output of second harmonic generations in photonic quantum well structures made of nonlinear material[J]. International Journal of Modern Physics B, 2012, 26(31): 3847-3856.

    [17] Chen B Q, Ren M L, Liu R J, et al.. Simultaneous broadband generation of second and third harmonics from chirped nonlinear photonic crystals[J]. Light: Science & Applications, 2014, 3(7): e189.

    [18] Chen B Q, Zhang C, Hu C Y, et al.. High-efficiency broadband high-harmonic generation from a single quasi-phase-matching nonlinear crystal[J]. Physical Review Letters, 2015, 115(8): 083902.

    [19] Fejer M M, Magel G A, Jundt D H, et al.. Quasi-phase-matched second harmonic generation: tuning and tolerances[J]. IEEE Journal of Quantum Electronics, 1992, 28(11): 2631-2654.

    [20] Gu B Y, Zhang Y, Dong B Z. Investigations of harmonic generations in aperiodic optical superlattices[J]. Journal of Applied physics, 2000, 87(11): 7629-7637.

    Ren Kun, Liu Yali, Ren Xiaobin, Fan Jingyang. Design of Multiple-Wavelength Frequency Conversion Device Based on Intensity Distribution[J]. Acta Optica Sinica, 2016, 36(5): 519002
    Download Citation