• Acta Optica Sinica
  • Vol. 40, Issue 10, 1002001 (2020)
Ning Zhang1、2, Qian Wang1、2, Weijing Zhao1、2, Qingchen Ji1、3, and Rong Wei1、*
Author Affiliations
  • 1Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Science, Beijing 100049, China
  • 3College of Sciences, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/AOS202040.1002001 Cite this Article Set citation alerts
    Ning Zhang, Qian Wang, Weijing Zhao, Qingchen Ji, Rong Wei. Design of Low Phase Noise Microwave Frequency Synthesizer for 85Rb Fountain Clock[J]. Acta Optica Sinica, 2020, 40(10): 1002001 Copy Citation Text show less
    References

    [1] Wynands R, Weyers S. Atomic fountain clocks[J]. Metrologia, 42, S64-S79(2005).

    [2] Li R X, Gibble K, Szymaniec K. Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts[J]. Metrologia, 48, 283-289(2011).

    [3] Wang Q, Wei R, Wang Y Z. Atomic fountain frequency standard: principle and development[J]. Acta Physica Sinica, 67, 163202(2018).

    [4] Weyers S, Gerginov V, Kazda M et al. Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks[J]. Metrologia, 55, 789-805(2018).

    [5] Heavner T P, Donley E A, Levi F et al. First accuracy evaluation of NIST-F2[J]. Metrologia, 51, 174-182(2014).

    [6] Guéna J, Abgrall M, Clairon A et al. Contributing to TAI with a secondary representation of the SI second[J]. Metrologia, 51, 108-120(2014).

    [7] Yu C H, Zhong W C, Estey B et al. Atom-interferometry measurement of the fine structure constant[J]. Annalen Der Physik, 531, 1800346(2019).

    [8] Tanabe T, Akamatsu D, Kobayashi T et al. Improved frequency measurement of the 1S0-3P0 clock transition in 87Sr using a Cs fountain clock as a transfer oscillator[J]. Journal of the Physical Society of Japan, 84, 115002(2015).

    [9] Marion H. Pereira dos Santos F, Abgrall M, et al. Search for variations of fundamental constants using atomic fountain clocks[J]. Physical Review Letters, 90, 150801(2003).

    [10] Berengut J C, Flambaum V V, Kava E M. Search for variation of fundamental constants and violations of fundamental symmetries using isotope comparisons[J]. Physical Review A, 84, 042510(2011).

    [11] Gibble K, Verhaar B J. Eliminating cold-collision frequency shifts[J]. Physical Review A, 52, 3370-3373(1995).

    [12] Kokkelmans S, Verhaar B J, Gibble K et al. Predictions for laser-cooled Rb clocks[J]. Physical Review A, 56, R4389-R4392(1997).

    [13] Wang Q, Zhang N, Guang W et al. Precision measurements of the ground-state hyperfine splitting of Rb85 using an atomic fountain clock[J]. Physical Review A, 100, 022510(2019).

    [14] Fertig C, Gibble K. Measurement and cancellation of the cold collision frequency shift in an 87Rb Fountain clock[J]. Physical Review Letters, 85, 1622-1625(2000).

    [15] Weyers S, Lipphardt B, Schnatz H. Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser[J]. Physical Review A, 79, 031803(2009).

    [16] Li W B, Du Y B, Li H et al. Development of low phase noise microwave frequency synthesizers for reducing Dick effect of Cs fountain clocks[J]. AIP Advances, 8, 095311(2018).

    [17] Rovera G D, Santarelli G, Clairon A. Frequency synthesis chain for the atomic fountain primary frequency standard[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43, 354-358(1996).

    [18] Chambon D, Lours M, Chapelet F et al. Design and metrological features of microwave synthesizers for atomic fountain frequency standard[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 54, 729-735(2007).

    [19] Santarelli G, Governatori G, Chambon D et al. Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 56, 1319-1326(2009).

    [20] Liu N, Lin P, Wang P et al. The design of microwave synthesizer for cesium atomic fountain clock of NIM[J]. Acta Metrologica Sinica, 31, 274-277(2010).

    [21] Yu M Y, Wang Y N, Wan J Y et al. Low phase noise microwave frequency synthesizer for cold atom clock[J]. AIP Advances, 9, 045223(2019).

    [22] Hartnett J G, Nand N R, Parker S R et al. Radio frequency signals synthesised from independent cryogenic sapphire oscillators[J]. Electronics Letters, 50, 294-295(2014).

    [23] Xie X P, Bouchand R, Nicolodi D et al. Photonic microwave signals with zeptosecond-level absolute timing noise[J]. Nature Photonics, 11, 44-47(2017).

    [24] Didier A, Millo J, Grop S et al. Ultra-low phase noise all-optical microwave generation setup based on commercial devices[J]. Applied Optics, 54, 3682-3686(2015).

    [25] Li T, Huang J C, Qu Q Z et al. Space qualified microwave source for cold atom clock operating in orbit[J]. Review of Scientific Instruments, 89, 113115(2018).

    [26] Santarelli G, Audoin C, Makdissi A et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45, 887-894(1998).

    [27] Greenhall C A. A derivation of the long-term degradation of a pulsed atomic frequency standard from a control-loop model[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 45, 895-898(1998).

    [28] Riehle F. Frequency standards: basics and applications[M]. Weinheim: John Wiley & Sons, 74(2006).

    [29] Du Y B, Wei R, Dong R C et al. Recent improvements on the atomic fountain clock at SIOM[J]. Chinese Physics B, 24, 070601(2015).

    Ning Zhang, Qian Wang, Weijing Zhao, Qingchen Ji, Rong Wei. Design of Low Phase Noise Microwave Frequency Synthesizer for 85Rb Fountain Clock[J]. Acta Optica Sinica, 2020, 40(10): 1002001
    Download Citation