• Laser & Optoelectronics Progress
  • Vol. 56, Issue 4, 041203 (2019)
Lianjie Yang1, Yang Li1、2、*, Junjie Sun1、2, and Yun Zou1、2
Author Affiliations
  • 1 School of Mechanical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
  • 2 Henan Provincial Engineering Laboratory for Anti-Fatigue Manufacturing Technology, Zhengzhou, Henan 450001, China
  • show less
    DOI: 10.3788/LOP56.041203 Cite this Article Set citation alerts
    Lianjie Yang, Yang Li, Junjie Sun, Yun Zou. Reflection and Transmission of Laser Ultrasonic Waves on Surface Defects[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041203 Copy Citation Text show less
    References

    [1] Schijve J. Fatigue of structures and materials[M]. Dordrecht: Springer Netherlands(2009).

    [2] Clorennec D, Royer D, Walaszek H. Nondestructive evaluation of cylindrical parts using laser ultrasonics[J]. Ultrasonics, 40, 783-789(2002). http://europepmc.org/abstract/MED/12160045

    [3] Bernstein J R, Spicer J B. Hybrid laser/broadband EMAT ultrasonic system for characterizing cracks in metals[J]. Journal of the Acoustical Society of America, 111, 1685-1691(2002). http://europepmc.org/abstract/med/12002851

    [4] Arias I, Achenbach J D. A model for the ultrasonic detection of surface-breaking cracks by the scanning laser source technique[J]. Wave Motion, 39, 61-75(2004). http://www.sciencedirect.com/science/article/pii/S0165212503000908

    [5] Zhan Y, Liu C S, Kong X W et al. Experiment and numerical simulation for laser ultrasonic measurement of residual stress[J]. Ultrasonics, 73, 271-276(2017). http://www.ncbi.nlm.nih.gov/pubmed/27575300

    [6] Manzo A J, Kenderian S, Helvajian H. Application of laser ultrasonic non-destructive evaluation technique to additive manufacturing[J]. Proceedings of SPIE, 9738, 973810(2016). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2219866

    [7] Domarkas V. Khuri-Yakub B T, Kino G S. Length and depth resonances of surface cracks and their use for crack size estimation[J]. Applied Physics Letters, 33, 557-559(1978).

    [8] Kromine A K, Fomitchov P A, Krishnaswamy S et al. Laser ultrasonic detection of surface breaking discontinuities: scanning laser source technique[J]. Materials Evaluation, 58, 173-177(2000).

    [9] Cho Y, Rose J L. An elastodynamic hybrid boundary element study for elastic guided wave interactions with a surface breaking defect[J]. International Journal of Solids and Structures, 37, 4103-4124(2000). http://www.sciencedirect.com/science/article/pii/S0020768399001420

    [10] Li L B, Li L B, Hu H S et al. C]∥China Western Acoustical Academic Exchange Conference, Dunhuang: [s. n. ](2013).

    [11] Yashiro S, Takatsubo J, Miyauchi H et al. A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan[J]. NDT & E International, 41, 137-144(2008). http://www.sciencedirect.com/science/article/pii/S0963869507000916

    [12] Sui X L, Xiao X, Qi H Y et al. Influence of residual stress on young modulus detection of SiO2 bulk materials by laser-induced surface ultrasonic wave technique[J]. Laser & Optoelectronics Progress, 54, 121202(2017).

    [13] Zhu H L, Liu C, Zhang B et al. Research on laser ultrasonic visual image processing[J]. Chinese Journal of Lasers, 45, 0104004(2018).

    [14] Guan J F, Shen Z H, Xu B Q et al. Finite element analysis of laser-generated Rayleigh wave scattering by cracks in a plate[J]. Acta Photonica Sinica, 34, 1128-1132(2005).

    [15] Li Y, Cai G X, Dong R Q. The reflection and transmission of Lamb waves at overlap joints[J]. Acta Acustica, 42, 495-503(2017).

    Lianjie Yang, Yang Li, Junjie Sun, Yun Zou. Reflection and Transmission of Laser Ultrasonic Waves on Surface Defects[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041203
    Download Citation