• Photonics Research
  • Vol. 7, Issue 11, 1244 (2019)
Shouzhu Niu1、2, Junqi Liu1、2、3、5、*, Fengmin Cheng1、2、3, Huan Wang1、2、3, Jinchuan Zhang1、2、3, Ning Zhuo1、2、3, Shenqiang Zhai1、2、3, Lijun Wang1、2、3, Shuman Liu1、2、3, Fengqi Liu1、2、3, Zhanguo Wang1、2、3, Xiaohua Wang1、2、4、*, and Zhipeng Wei1、2
Author Affiliations
  • 1State Key Laboratory of High Power Semiconductor Lasers, School of Science, Changchun University of Science and Technology, Changchun 130022, China
  • 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4e-mail: biewang2001@126.com
  • 5e-mail: jqliu@semi.ac.cn
  • show less
    DOI: 10.1364/PRJ.7.001244 Cite this Article Set citation alerts
    Shouzhu Niu, Junqi Liu, Fengmin Cheng, Huan Wang, Jinchuan Zhang, Ning Zhuo, Shenqiang Zhai, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang, Xiaohua Wang, Zhipeng Wei. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction[J]. Photonics Research, 2019, 7(11): 1244 Copy Citation Text show less
    References

    [1] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho. Quantum cascade laser. Science, 264, 553-556(1994).

    [2] N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi. High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers. Appl. Phys. Lett., 100, 212104(2012).

    [3] K. Fujita, M. Yamanishi, S. Furuta, A. Sugiyama, T. Edamura. Extremely temperature-insensitive continuous-wave quantum cascade lasers. Appl. Phys. Lett., 101, 181111(2012).

    [4] C. Deutsch, M. A. Kainz, M. Krall, M. Brandstetter, D. Bachmann, S. Schönhuber, H. Detz, T. Zederbauer, D. MacFarland, A. M. Andrews, W. Schrenk, M. Beck, K. Ohtani, J. Faist, G. Strasser, K. Unterrainer. High-power growth-robust InGaAs/InAlAs terahertz quantum cascade lasers. ACS Photon., 4, 957-962(2017).

    [5] M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, S. Slivken. Quantum cascade lasers: from tool to product. Opt. Express, 23, 8462-8475(2015).

    [6] M. Razeghi, N. Bandyopadhyay, Y. Bai, Q. Lu, S. Slivken. Recent advances in mid infrared (3-5  μm) quantum cascade lasers. Opt. Mater. Express, 3, 1872-1884(2013).

    [7] M. S. Vitiello, G. Scalari, B. Williams, P. D. Natale. Quantum cascade lasers: 20 years of challenges. Opt. Express, 23, 5167-5182(2015).

    [8] A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, C. K. N. Patel. 3  W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach. Appl. Phys. Lett., 95, 141113(2009).

    [9] N. Bandyopadhyay, Y. Bai, B. Gokden, A. Myzaferi, S. Tsao, S. Slivken, M. Razeghi. Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ∼3.76  μm. Appl. Phys. Lett., 97, 131117(2010).

    [10] A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. K. N. Patel. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt. Express, 20, 24272-24279(2012).

    [11] F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, C. E. Zah. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ > 10  μm. IEEE J. Quantum Electron., 19, 1200407(2013).

    [12] A. Szerling, S. Slivken, M. Razeghi. High peak power 16  μm InP-related quantum cascade laser. Opto-Electron. Rev., 25, 205-208(2017).

    [13] K. Fujita, M. Yamanishi, T. Edamura, A. Sugiyama, S. Furuta. Extremely high T0-values (∼450  K) of long-wavelength (∼15  μm), low-threshold-current-density quantum-cascade lasers based on the indirect pump scheme. Appl. Phys. Lett., 97, 201109(2010).

    [14] M. Rochat, D. Hofstetter, M. Beck, J. Faist. Long-wavelength (λ ≈ 16  μm), room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl. Phys. Lett., 79, 4271-4273(2001).

    [15] A. Tredicucci, C. Gmachl, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho. Long wavelength superlattice quantum cascade lasers at λ ≃ 17  μm. Appl. Phys. Lett., 74, 638-640(1999).

    [16] H. N. Van, Z. Loghmari, H. Philip, M. Bahriz, A. N. Baranov, R. Teissier. Long wavelength (λ > 17  μm) distributed feedback quantum cascade lasers operating in a continuous wave at room temperature. Photonics, 6, 31(2019).

    [17] A. N. Baranov, M. Bahriz, R. Teissier. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15  μm. Opt. Express, 24, 18799-18806(2016).

    [18] X. Huang, W. O. Charles, C. Gmachl. Temperature-insensitive long-wavelength (λ ≈ 14  μm) quantum cascade lasers with low threshold. Opt. Express, 19, 8297-8302(2011).

    [19] S. Slivken, A. Evans, J. David, M. Razeghi. High-average-power, high-duty-cycle (λ ∼ 6  μm) quantum cascade lasers. Appl. Phys. Lett., 81, 4321-4323(2002).

    CLP Journals

    [1] Kazuue Fujita, Shohei Hayashi, Akio Ito, Tatsuo Dougakiuchi, Masahiro Hitaka, Atsushi Nakanishi. Broadly tunable lens-coupled nonlinear quantum cascade lasers in the sub-THz to THz frequency range[J]. Photonics Research, 2022, 10(3): 703

    [2] Tingting Zeng, Meiping Zhu, Yingjie Chai, Jingping Li, Jianda Shao. Dichroic laser mirrors with mixture layers and sandwich-like-structure interfaces[J]. Photonics Research, 2021, 9(2): 229

    [3] Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301

    Shouzhu Niu, Junqi Liu, Fengmin Cheng, Huan Wang, Jinchuan Zhang, Ning Zhuo, Shenqiang Zhai, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang, Xiaohua Wang, Zhipeng Wei. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction[J]. Photonics Research, 2019, 7(11): 1244
    Download Citation