• Chinese Optics Letters
  • Vol. 19, Issue 12, 123601 (2021)
Yao Qin1, Jinying Xu2, Yineng Liu1、*, and Huanyang Chen1
Author Affiliations
  • 1Institute of Electromagnetics and Acoustics and School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
  • 2Department of Physics, Fuzhou University, Fuzhou 350108, China
  • show less
    DOI: 10.3788/COL202119.123601 Cite this Article Set citation alerts
    Yao Qin, Jinying Xu, Yineng Liu, Huanyang Chen. Multifrequency superscattering pattern shaping[J]. Chinese Optics Letters, 2021, 19(12): 123601 Copy Citation Text show less

    [1] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, W. E. Moerner. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon., 3, 654(2009).

    [2] S. Arslanagic, R. W. Ziolkowski. Highly subwavelength, superdirective cylindrical nanoantenna. Phys. Rev. Lett., 120, 237401(2018).

    [3] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett., 5, 709(2005).

    [4] J. Sheng, J. Xie, J. Liu. Multiple super-resolution imaging in the second band of gradient lattice spacing photonic crystal flat lens. Chin. Opt. Lett., 18, 120501(2020).

    [5] J. Zhao, X. Y. Zhang, C. R. Yonzon, A. J. Haes, R. P. Van Duyne. Localized surface plasmon resonance biosensors. Nanomedicine, 1, 219(2006).

    [6] J. Wang, X. Wang, M. Zeng. Broadband transverse displacement sensing of silicon hollow nanodisk under focused radial polarization illumination in the near-infrared region. Chin. Opt. Lett., 18, 063602(2020).

    [7] A. Schliesser, N. Picqúe, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photon., 6, 440(2012).

    [8] M. A. Green, S. Pillai. Harnessing plasmonics for solar cells. Nat. Photon., 6, 130(2012).

    [9] W. Xu, L. Xie, Y. Ying. Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale, 9, 13864(2017).

    [10] L. Novotny, B. Hecht. Principles of Nano-optics(2012).

    [11] Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355, 1062(2017).

    [12] T. Yang, H. Chen, X. Luo, H. Ma. Superscatterer: enhancement of scattering with complementary media. Opt. Express, 16, 18545(2008).

    [13] W. H. Wee, J. B. Pendry. Shrinking optical devices. New J. Phys., 11, 073033(2009).

    [14] Z. Ruan, S. Fan. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett., 105, 013901(2010).

    [15] R. J. Li, X. Lin, S. S. Lin, X. Liu, H. S. Chen. Tunable deep-subwavelength superscattering using graphene monolayers. Opt. Lett., 40, 1651(2015).

    [16] R. J. Li, X. Lin, S. S. Lin, X. Liu, H. S. Chen. Atomically thin spherical shell-shaped superscatterers based on Bohr model. Nanotechnology, 26, 505201(2015).

    [17] R. Li, B. Zheng, X. Lin, R. Hao, S. Lin, W. Yin, E. Li, H. Chen. Design of ultracompact graphene-based superscatterers. IEEE J. Sel. Top. Quantum Electron., 23, 4600208(2017).

    [18] W. Liu. Ultra-directional super-scattering of homogenous spherical particles with radial anisotropy. Opt. Express, 23, 14734(2015).

    [19] W. Liu, B. Lei, J. Shi, H. Hu. Unidirectional superscattering by multilayered cavities of effective radial anisotropy. Sci. Rep., 6, 34775(2016).

    [20] W. Liu. Superscattering pattern shaping for radially anisotropic nanowires. Phys. Rev. A, 96, 023854(2017).

    [21] W. Wan, W. Zheng, Y. Chen, Z. Liu. From Fano-like interference to superscattering with a single metallic nanodisk. Nanoscale, 6, 9093(2014).

    [22] Y. Huang, L. Gao. Superscattering of light from core-shell nonlocal plasmonic nanoparticles. J. Phys. Chem. C, 118, 30170(2014).

    [23] A. Mirzaei, A. Miroshnichenko, I. Shadrivov, Y. Kivshar. Superscattering of light optimized by a genetic algorithm. Appl. Phys. Lett., 105, 011109(2014).

    [24] C. Wang, C. Qian, H. Hu, L. Shen, Z. Wang, H. Wang, Z. Xu, B. Zhang, H. Chen, X. Lin. Superscattering of light in refractive-index near-zero environments. Prog. Electromagn. Res., 168, 15(2020).

    [25] M. Zhou, L. Shi, J. Zi, Z. Yu. Extraordinarily large optical cross section for localized single nanoresonator. Phys. Rev. Lett., 115, 023903(2015).

    [26] P. Del’Haye, T. Herr, E. Gavartin, M. Gorodetsky, R. Holzwarth, T. J. Kippenberg. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107, 063901(2011).

    [27] F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, S. A. Diddams. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express, 23, 26814(2015).

    [28] C. Qian, X. Lin, Y. Yang, F. Gao, Y. Shen, J. Lopez, I. Kaminer, B. Zhang, E. Li, M. Soljačić, H. Chen. Multifrequency superscattering from subwavelength hyperbolic structures. ACS Photon., 5, 1506(2018).

    [29] H. W. Wu, Y. Fang, J. Q. Quan, Y. Z. Han, Y. Q. Yin, Y. Li, Z. Q. Sheng. Multifrequency superscattering with high Q factors from a deep-subwavelength spoof plasmonic structure. Phys. Rev. B, 100, 235443(2019).

    [30] C. Qian, X. Lin, Y. Yang, X. Xiong, H. Wang, E. Li, I. Kaminer, B. Zhang, H. Chen. Experimental observation of superscattering. Phys. Rev. Lett., 122, 063901(2019).

    [31] V. I. Shcherbinin, V. I. Fesenko, T. I. Tkachova, V. R. Tuz. Superscattering from subwavelength corrugated cylinders. Phys. Rev. Appl., 13, 024081(2020).

    [32] S. H. Raad, C. J. Zapata-Rodríguez, Z. Atlasbaf. Multi-frequency super-scattering from sub-wavelength graphene-coated nanotubes. J. Opt. Soc. Am. B, 36, 2292(2019).

    [33] R. Kumar, K. Kajilawa. Superscattering from cylindrical hyperbolic metamaterials in the visible region. Opt. Express, 28, 1507(2020).

    [34] R. Kumar, K. Kajikawa. Comparison of cylinder- and planar-effective medium approximations on calculation of scattering properties of cylindrical hyperbolic metamaterials. J. Opt. Soc. Am. B, 36, 559(2019).

    [35] J. Chai, P. Hu, L. Ge, H. Xiang, D. Han. Tunable terahertz cloaking and lasing by the optically pumped graphene wrapped on a dielectric cylinder. J. Phys. Commun., 3, 035016(2019).

    [36] W. Liu, A. E. Miroshnichenko, Y. S. Kivshar. Q- factor enhancement in all-dielectric anisotropic nanoresonators. Phys. Rev. B, 94, 195436(2016).

    [37] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836(2019).

    [38] T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi. Transfer matrix method for optics in graphene layers. J. Phys. Condens. Matter., 25, 215301(2013).

    [39] W. Liu, Y. S. Kivshar. Generalized Kerker effects in nanophotonics and meta-optics. Opt. Express, 26, 13085(2018).

    [40] W. Liu. Generalized magnetic mirrors. Phys. Rev. Lett., 119, 123902(2017).

    [41] H. C. van de Hulst. Light Scattering by Small Particles(1981).

    Data from CrossRef

    [1] Bing Duan, Bei Wu, Jin-hui Chen, Huanyang Chen, Da-Quan Yang. Deep Learning for Photonic Design and Analysis: Principles and Applications. Frontiers in Materials, 8, 791296(2022).

    Yao Qin, Jinying Xu, Yineng Liu, Huanyang Chen. Multifrequency superscattering pattern shaping[J]. Chinese Optics Letters, 2021, 19(12): 123601
    Download Citation