• Laser & Optoelectronics Progress
  • Vol. 55, Issue 4, 040001 (2018)
Jun Zhao, Minglie Hu, Jintao Fan, Bowen Liu, Youjian Song, Lu Chai*, and Qingyue Wang
Author Affiliations
  • Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronics Information and Technique, Ministry of Education, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP55.040001 Cite this Article Set citation alerts
    Jun Zhao, Minglie Hu, Jintao Fan, Bowen Liu, Youjian Song, Lu Chai, Qingyue Wang. Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001 Copy Citation Text show less
    References

    [1] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000082000020004142000001&idtype=cvips&gifs=Yes

    [2] Zhang Z G[M]. Femtosecond laser pulse technology and application(2005).

    [3] Ruebel F, Haag P. L'huillier J A. Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation[J]. Applied Physics Letters, 92, 011122(2008). http://scitation.aip.org/content/aip/journal/apl/92/1/10.1063/1.2831663

    [4] Danielius R, Piskarskas A, Stabinis A et al. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses[J]. Journal of the Optical Society of America B, 10, 2222-2232(1993). http://www.opticsinfobase.org/abstract.cfm?uri=josab-10-11-2222

    [5] Cerullo G, de Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 74, 1-18(2003). http://scitation.aip.org/content/aip/journal/rsi/74/1/10.1063/1.1523642

    [6] Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics[J]. Physical Review Letters, 7, 118-119(1961).

    [7] Maker P D, Terhune R W, Nissenoff M et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 8, 21-22(1962). http://adsabs.harvard.edu/abs/1962PhRvL...8...21M

    [8] Armstrong J A, Bloembergen N, Ducuing J et al. Interaction between light waves in a nonlinear dielectric[J]. Physical Review, 127, 1918-1939(1962). http://www.worldscientific.com/doi/abs/10.1142/9789814540223_0041

    [9] Dubietis A, Butkus R, Piskarskas A. Trends in chirped pulse optical parametric amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 12, 163-172(2006). http://ieeexplore.ieee.org/document/1632161/

    [10] Petrov V, Rotermund F, Noack F et al. Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals[J]. Journal of Optics A: Pure and Applied Optics, 3, 1-19(2001).

    [11] Fermann M E, Hartl I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 191-206(2009). http://ieeexplore.ieee.org/document/4773318/

    [12] Shi S X, Chen G F, Zhao W et al[M]. Nonlinear optics(2003).

    [13] Fox A M[M]. Optical properties of solids(2001).

    [14] Kumar S C, Samanta G K, Devi K et al. Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti∶sapphire laser[J]. Applied Optics, 51, 15-20(2012). http://www.opticsinfobase.org/abstract.cfm?uri=ao-51-1-15

    [15] Limpert J, Roser F, Schreiber T et al. High-power ultrafast fiber laser systems[J]. Selected Topics in Quantum Electronics, 12, 233-244(2006). http://ieeexplore.ieee.org/document/1632169/

    [16] Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fiber[J]. Chinese Journal of Lasers, 33, 57-66(2006).

    [17] Chai L, Hu M L, Fang X H et al. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese Journal of Lasers, 40, 0101001(2013).

    [18] Huang L L, Hu M L, Fang X H et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber[J]. IEEE Photonics Journal, 8, 7101307(2016). http://ieeexplore.ieee.org/document/7484702/

    [19] Ebrahimzadeh M. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, solid-state mid-infrared laser sources[J]. Springer Berlin Heidelberg, 89, 184-224(2003).

    [20] Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 14, 973-976(1965). http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.14.973

    [21] Edelstein D C, Wachman E S, Tang C L. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Applied Physics Letters, 54, 1728-1730(1989). http://scitation.aip.org/content/aip/journal/apl/54/18/10.1063/1.101272

    [22] Lin X, Feehan J S, Li S et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality[J]. Applied Physics B, 117, 987-993(2014). http://link.springer.com/article/10.1007/s00340-014-5918-7

    [23] Cao J J, Shen D Y, Zheng Y L et al. Femtosecond OPO based on MgO∶PPLN synchronously pumped by a 532 nm fiber laser[J]. Laser Physics, 27, 055402(2017). http://adsabs.harvard.edu/abs/2017LaPhy..27e5402C

    [24] Zhang B G, Yao J Q, Lu Y et al. High-average-power nanosecond quasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate[J]. Chinese Physics Letters, 22, 1691-1693(2005). http://www.cqvip.com/Main/Detail.aspx?id=15840692

    [25] Xu Z Y, Liang X Y, Li J et al. Violet to infrared multiwavelength generation in periodically poled lithium niobate pumped by a Q-switched Nd∶YVO4 laser[J]. Chinese Physics Letters, 19, 801-803(2002).

    [26] Burra K C, Tang C L, Arbore M A et al. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate[J]. Applied Physics Letters, 70, 3341-3343(1997). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4891311

    [27] O'Connor M V. Watson M A, Shepherd D P, et al. Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser[J]. Optics Letters, 27, 1052-1054(2002).

    [28] Gu C L, Hu M L, Zhang L M et al. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator[J]. Optics Letters, 38, 1820-1822(2013). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=186925

    [29] Gu C L, Hu M L, Fan J T et al. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator[J]. Optics Letters, 23, 6181-6186(2015). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-23-5-6181

    [30] Fan J T, Hu M L, Gu C L et al. High power femtosecond green-pumped optical parametric oscillator based on lithium triborate[J]. Chinese Journal of Lasers, 41, 0902009(2014).

    [31] Kafka J D, Watts M L, Pieterse J W et al. Synchronously pumped optical parametric oscillators with LiBO3[J]. Journal of the Optical Society of America B, 12, 2147-2157(1995). http://www.opticsinfobase.org/abstract.cfm?uri=josab-12-11-2147

    [32] Cleff C, Epping J, Gross P et al. Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy[J]. Applied Physics B, 103, 795-800(2011). http://link.springer.com/article/10.1007/s00340-011-4465-8

    [33] Fan J T, Gu C L, Wang C Y et al. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator[J]. Optics Express, 24, 13250-13257(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410342

    [34] Sun J, Gale B J, Reid D T. Dual-color operation of a femtosecond optical parametric oscillator exhibiting stable relative carrier-envelope phase-slip frequencies[J]. Optics Letters, 31, 2021-2023(2006). http://www.ncbi.nlm.nih.gov/pubmed/16770419/

    [35] Sun J, Gale B J, Reid D T. Coherent synthesis using carrier-envelope phase-controlled pulses from a dual-color femtosecond optical parametric oscillator[J]. Optics Letters, 32, 1396-1398(2007). http://www.opticsinfobase.org/abstract.cfm?uri=ol-32-11-1396

    [36] Hegenbarth R, Steinmann A, Sarkisov S et al. Milliwatt-level mid-infrared(10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator[J]. Optics Letters, 37, 3513-3515(2012). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6325475

    [37] Ruffing B, Nebel A, Wallenstein R. High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range[J]. Applied Physics B, 72, 137-149(2001). http://link.springer.com/article/10.1007/s003400000443

    [38] Schröder T, Boller K J, Fix A et al. Spectral properties and numerical modelling of a critically phase-matched nanosecond LiB3O5 optical parametric oscillator[J]. Applied Physics B, 58, 425-438(1994). http://link.springer.com/article/10.1007/BF01081885

    [39] Samanta G K, Ebrahim-Zadeh M. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator[J]. Optics Letters, 36, 3033-3035(2011). http://www.ncbi.nlm.nih.gov/pubmed/21847150

    [40] Gu C L, Hu M L, Fan J T et al. High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser[J]. Optics Letters, 39, 3896-3899(2014). http://europepmc.org/abstract/med/24978765

    [41] Feng S Q, Yu D P, Zhao Q et al. Synthesis, physical properties and application of semiconductor nanowires[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 43, 1470-1510(2013).

    [42] Zhang C, Zhang F, Xia T et al. Low-threshold two-photon pumped ZnO nanowire lasers[J]. Optics Express, 17, 7893-7900(2009). http://europepmc.org/abstract/MED/19434120

    [43] Johnson J C, Yan H, Yang P et al. Optical cavity effects in ZnO nanowire lasers and waveguides[J]. The Journal of Physical Chemistry B, 107, 8816-8828(2003). http://pubs.acs.org/doi/pdf/10.1021/jp034482n

    [44] Wang F, Reece P J, Paiman S et al. Nonlinear optical processes in optically trapped InP nanowires[J]. Nano Letters, 11, 4149-4153(2001). http://pubs.acs.org/doi/abs/10.1021/nl2020262

    [45] Prasanth R, van Vugt L K, Vanmaekelbergh D A M et al. . Resonance enhancement of optical second harmonic generation in a ZnO nanowire[J]. Applied Physics Letters, 88, 181501(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4819808

    [46] Johnson J C, Choi H J, Knutsen K P et al. Single gallium nitride nanowire lasers[J]. Nature Materials, 1, 106-110(2002). http://www.ncbi.nlm.nih.gov/pubmed/12618824

    [47] Liu R B, Zou B S. Lasing behavior from the condensation of polaronic excitons in a ZnO nanowire[J]. Chinese Physics B, 20, 047104(2011). http://www.cqvip.com/Main/Detail.aspx?id=37362952

    [48] Johnson J C, Yan H, Schaller R D et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires[J]. Nano Letters, 2, 279-283(2002). http://pubs.acs.org/doi/abs/10.1021/nl015686n

    [49] Nakayama Y, Pauzauskie P J, Radenovic A et al. Tunable nanowire nonlinear optical probe[J]. Nature, 447, 1098-1101(2007). http://europepmc.org/abstract/MED/17597756

    [50] Zhang Y, Zhou H, Liu S W et al. Second harmonic whispering gallery modes in ZnO nanotetrapod[J]. Nano Letters, 9, 2109-2112(2009). http://pubs.acs.org/doi/abs/10.1021/nl900622q

    [51] Chen R, Crankshaw S, Tran T et al. Second-harmonic generation from a single wurtzite GaAs nanoneedle[J]. Applied Physics Letters, 96, 051110(2010). http://scitation.aip.org/content/aip/journal/apl/96/5/10.1063/1.3304118

    [52] He H, Zhang X Q, Yan X et al. Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources[J]. Applied Physics Letters, 103, 143110(2013). http://scitation.aip.org/content/aip/journal/apl/103/14/10.1063/1.4824024

    [53] Zhang X Q, He H, Fan J T et al. Sum frequency generation in pure zinc-blende GaAs nanowires[J]. Optics Express, 21, 28432-28437(2013). http://europepmc.org/abstract/med/24514354

    [54] Apolonski A, Povazay B, Unterhuber A et al. The spectral shaping the supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. Journal of the Optical Society of America B, 19, 2165-2170(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000012000057000001&idtype=cvips&gifs=Yes

    [55] Ranka J K, Windeler R S, Stentz A J. Optical properties of high-delta air-silica microstructure optical fibers[J]. Optics Letters, 25, 796-798(2000). http://europepmc.org/abstract/MED/18064187

    [56] Fang X H, Hu M L, Liu B W et al. An all-photonic-crystal-fiber wavelength-tunable source of high-energy sub-100 fs pulses[J]. Optics Communications, 289, 123-126(2013). http://www.sciencedirect.com/science/article/pii/S0030401812008115

    [57] Huang L L. Investigation on optimization of dynamic evolution in a femtosecond laser system based on photonic crystal fiber[M]. Tianjin: Tianjin University, 73-77(2016).

    [58] Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 14, 11575-11584(2006). http://europepmc.org/abstract/MED/19529577

    [59] Cezard N, Dobroc A, Canat G et al. Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture[C]. SPIE, 81820, 81820V(2011).

    [60] Washburn B R, Diddams S A, Newbury N R et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 29, 250-252(2004). http://www.opticsinfobase.org/abstract.cfm?id=78624

    [61] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 416, 233-237(2002).

    [62] Schenkel B, Biegert J, Keller U et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum[J]. Optics Letters, 28, 1987-1989(2003). http://www.ncbi.nlm.nih.gov/pubmed/14587798

    [63] Jones D J, Diddams S A, Ranka J K et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 288, 635-639(2000). http://europepmc.org/abstract/MED/10784441

    [64] Holzwarth R, Reichert J, Udem T et al. Optical frequency metrology and its contribution to the determination of fundamental constants[J]. AIP Conference Proceedings, 551, 58-72(2001). http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1354339

    [65] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 ? via four-photon coupling inglass[J]. Physical Review Letters, 24, 584-588(1970). http://adsabs.harvard.edu/abs/1970PhRvL..24..584A

    [66] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 24, 592-594(1970). http://prola.aps.org/abstract/PRL/v24/i11/p592_1

    [67] Leon-Saval S G, Birks T A, Wadsworth W J et al. . Supercontinuum generation in submicron fiber waveguides[J]. Optics Express, 12, 2864-2869(2004). http://www.europepmc.org/abstract/MED/19483801

    [68] Hundertmark H, Kracht D, Wandt D et al. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm[J]. Optics Express, 11, 3196-3201(2003). http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-24-3196

    [69] Corwin K L, Newbury N R, Dudley J M et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber[J]. Applied Physics B, 77, 269-277(2003).

    [70] Apolonski A, Povazay B, Unterhuber A et al. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. Journal of the Optical Society of America B, 19, 2165-2170(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000012000057000001&idtype=cvips&gifs=Yes

    [71] Coen S. Chau A H L, Leonhardt R, et al. White-light supercontinuum generation with 60-ps pump pulses in a photoric crystal fiber[J]. Optics Letters, 26, 1356-1358(2001).

    [72] Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Physical Review Letters, 87, 203901(2001). http://www.ncbi.nlm.nih.gov/pubmed/11690475

    [73] Herrmann J, Griebner U, Zhavoronkov N et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Physical Review Letters, 88, 173901(2002). http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2002-QWE6

    [74] Husakou A V, Herrmann J. Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers[J]. Journal of the Optical Society of America B, 19, 2171-2182(2002). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000006000012000056000001&idtype=cvips&gifs=Yes

    [75] Dudley J M, Provino L, Grossard N et al. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping[J]. Journal of the Optical Society of America B, 19, 765-771(2002). http://www.opticsinfobase.org/abstract.cfm?id=68471

    [76] Genty G, Lehtonen M, Ludvigsen H et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers[J]. Optics Express, 10, 1083-1098(2002). http://europepmc.org/abstract/MED/19451966

    [77] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Optics Letters, 25, 25-27(2000). http://ieeexplore.ieee.org/iel5/6638/17705/00834609.pdf

    [78] Domachuk P, Wolchover N A, Cronin-Golomb M et al. The over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 16, 7161-7168(2008). http://europepmc.org/abstract/MED/18545419

    [79] Stark S P, Travers J C. Russell P S J. Extreme supercontinuum generation to the deep UV[J]. Optics Letters, 37, 770-772(2012).

    [80] Huang L L, Hu M L, Fang X H et al. Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber[J]. IEEE Photonics Technology Letters, 26, 1968-1971(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6872582

    [81] Fang X H, Hu M L, Li Y F et al. The numerical analysis for structure optimization of seven-core photonic crystal talent[J]. Acta Physica Sinica, 58, 2495-2500(2009).

    [82] Fang X H, Hu M L, Huang L L et al. The multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Optics Letters, 37, 2292-2294(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-12-2292

    [83] Omenetto F G, Taylor A J, Moores M D et al. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber[J]. Optics Letters, 26, 1158-1160(2001). http://ieeexplore.ieee.org/xpl/abstractMetrics.jsp?reload=true&tp=&arnumber=961827

    [84] Serebryannikov E E, Fedotov A B, Zheltikov A M et al. Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber[J]. Journal of the Optical Society of America B, 23, 1975-1979(2006). http://www.opticsinfobase.org/abstract.cfm?uri=josab-23-9-1975

    [85] Konorov S O, Fedotov A B, Serebryannikov E E et al. Phase-matched coherent anti-Stokes Raman scattering in isolated air-guided modes of hollow photonic-crystal fibers[J]. Journal of Raman Spectroscopy, 36, 129-133(2005). http://onlinelibrary.wiley.com/doi/10.1002/jrs.1295/full

    [86] Fedotov A B, Voronin A A, Serebryannikov E E et al. Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber[J]. Physical Review E, 75, 016614(2007). http://europepmc.org/abstract/MED/17358282

    [87] Naumov A N, Fedotov A B, Zheltikov A M et al. Enhanced χ(3) interactions of unamplified femtosecond Cr∶ forsterite laser pulses in photonic-crystal fibers [J]. Journal of the Optical Society of America B, 19, 2183-2190(2002). http://www.opticsinfobase.org/josab/abstract.cfm?id=69958

    [88] Zheltikov A M. Third-harmonic generation with no signal at 3ω[J]. Physical Review A, 72, 043812(2005). http://adsabs.harvard.edu/abs/2005PhRvA..72d3812Z

    [89] Liu B W, Hu M L, Wang S J et al. All-photonic-crystal-fiber coherent black-light source[J]. Optics Letters, 35, 3958-3960(2010). http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-23-3958

    [90] Teng H, Chai L, Wang Q Y et al. Optimization of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber[J]. Acta Physica Sinica, 66, 044205(2017).

    Jun Zhao, Minglie Hu, Jintao Fan, Bowen Liu, Youjian Song, Lu Chai, Qingyue Wang. Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001
    Download Citation