• High Power Laser and Particle Beams
  • Vol. 36, Issue 4, 043001 (2024)
Zhaofeng Wu, Yanlin Xu*, Peiguo Liu, and Song Zha
Author Affiliations
  • College of Electronics Science and Technology, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.11884/HPLPB202436.230375 Cite this Article
    Zhaofeng Wu, Yanlin Xu, Peiguo Liu, Song Zha. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36(4): 043001 Copy Citation Text show less
    References

    [1] Zheng Haoyue, He Yu, He Xiaodong, . Analysis of safety threat from high electromagnetic pulses and power protection research of vehicle electronic control unit[J]. High Power Laser and Particle Beams, 32, 073003(2020).

    [2] Liu Chang, Li Hanyu, Bao Xianfeng, . Electromagnetic pulse effect simulation and rating of RF front-end of super-heterodyne receiver[J]. High Power Laser and Particle Beams, 33, 123016(2021).

    [3] Song Jie, Lu Zukun, Liu Zhe, . Review on the time-domain interference suppression of navigation receiver[J]. Systems Engineering and Electronics, 45, 1164-1176(2023).

    [4] Xu Chenren, Ma Xiangtian, Xu Haotian, . A survey of 5G anti-interference technology[J]. Acta Electronica Sinica, 51, 765-778(2023).

    [5] Wang Huida, Song Wei, Xiao Renzhen, et al. A dual-frequency high-power microwave generator[J]. IEEE Transactions on Plasma Science, 47, 4287-4291(2019).

    [6] Zhang Haoran, Shu Ting, Li Zhiqiang, et al. A compact 4 GW pulse generator based on pulse forming network-Marx for high-power microwave application[J]. Review of Scientific Instruments, 92, 064707(2021).

    [7] Yao Bin. Research on the joint coupling effect of front do back do of electromagic pulse on low noise amplifier[D]. Xi’an: Xidian University, 2022

    [8] Feng Hanliang, Wu Xiaolong, Li Yong. Review of the U. S. Congress’ commission to assess the threat to the United States from electromagnetic pulse attack and its reports[J]. Equipment Environmental Engineering, 17, 132-137(2020).

    [9] Wu Qi, Liu Yuanan, Wen Yinghong, . Non-nuclear electromagnetic pulse threat of critical infrastructures and protection strategies[J]. Strategic Study of Chinese Academy of Engineering, 24, 249-258(2022).

    [10] Arnesen O H, Hoad R. Overview of the European project ‘HIPOW’[J]. IEEE Electromagnetic Compatibility Magazine, 3, 64-67(2014).

    [11] Van De Beek S, Dawson J, Flintoft I, et al. Overview of the European project STRUCTURES[J]. IEEE Electromagnetic Compatibility Magazine, 3, 70-79(2014).

    [12] Liu Peiguo, Liu Chenxi, Tan Jianfeng, . Analysis of the research development on HPM/EMP protection[J]. Chinese Journal of Ship Research, 10, 2-6(2015).

    [13] Yang S S, Kim T Y, Kong D K, et al. A novel analysis of a Ku-band planar p-i-n diode limiter[J]. IEEE Transactions on Microwave Theory and Techniques, 57, 1447-1460(2009).

    [14] Li Shifeng, Ma Lijun, Wang Leiyang, et al. High power 10-18 GHz monolithic limiter based on GaAs p-i-n technology[J]. IEEE Microwave and Wireless Components Letters, 32, 1107-1110(2022).

    [15] Peng Longxin, Li Zhen, Xu Bo, . 100 W X-band GaAs monolithic high power PIN limiter[J]. Research & Progress of SSE, 37, 99-102,139(2017).

    [16] Deng Shixiong, Gao Changzheng, Chen Shubin, . Research on miniaturized high power microwave limiter[J]. Journal of Microwaves, 36, 70-73(2020).

    [17] Wu Zhaofeng. Study of quickresponse highpower limiting technology[D]. Changsha: National University of Defense Technology, 2019

    [18] Xie Yanzhao, Wang Zanji, Wang Qunshu, . High altitude nuclear electromagnetic pulse waveform standards: a review[J]. High Power Laser and Particle Beams, 15, 781-787(2003).

    [19] Ricketts L W, Bridges J E, Miletta J. EMP radiation protective techniques[M]. New Yk: Wiley, 1976.

    [20] Li Qiangbing, Liu Dan. A design of electromagnetic pulse radiation system[J]. Journal of Terahertz Science and Electronic Information Technology, 19, 453-457(2021).

    [21] Lee S, Yoon S, Lee J. Electroformed dual-mode waveguide filter with no tuning screws[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 13, 138-141(2023).

    [22] Eskandari A R, Kheirdoost A, Haghparast M. Improvement of passband flatness for a compact, narrowband, and highly selective TM dual-mode filter[J]. IEEE Transactions on Microwave Theory and Techniques, 68, 1591-1597(2020).

    [23] Xu Kaida, Lu Sen, Guo Yingjiang, et al. Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures[J]. IEEE Journal of Radio Frequency Identification, 6, 54-63(2022).

    [24] Dong Jiancheng, Shi Jin, Xu Kai. Compact wideband differential bandpass filter using coupled microstrip lines and capacitors[J]. IEEE Microwave and Wireless Components Letters, 29, 444-446(2019).

    [25] Huang Xiaolong, Zhang Xiuyin, Zhou Liang, et al. Low-loss self-packaged Ka-Band LTCC filter using artificial multimode SIW resonator[J]. IEEE Transactions on Circuits and Systems II:Express Briefs, 70, 451-455(2023).

    [26] Zhu Haoran, Wang Wentao. High selectivity millimeter-wave on-chip band-pass filter with semi-lumped dual-mode resonator by using GaAs technology[J]. IEEE Electron Device Letters, 44, 729-732(2023).

    [27] Xu Kaida, Xia Shengpei, Jiang Yannan, et al. Compact millimeter-wave on-chip dual-band bandpass filter in 0.15-μm GaAs technology[J]. IEEE Journal of the Electron Devices Society, 10, 152-156(2022).

    [28] Shen Junyao, Fu Sulei, Su Rongxuan, et al. A low-loss wideband SAW filter with low drift using multilayered structure[J]. IEEE Electron Device Letters, 43, 1371-1374(2022).

    [29] Panwar R, Lee J R. Progress in frequency selective surface-based smart electromagnetic structures: a critical review[J]. Aerospace Science and Technology, 66, 216-234(2017).

    [30] Reis J R, Caldeirinha R F S, Hammoudeh A, et al. Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering[J]. IEEE Transactions on Antennas and Propagation, 65, 4880-4885(2017).

    [31] Tao Keya, Li Bo, Tang Yiming, et al. Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity[J]. Electronics Letters, 53, 324-326(2017).

    [32] Cross L W, Almalkawi M J, Devabhaktuni V K. Theory and demonstration of narrowband bent hairpin filters integrated with AC-coupled plasma limiter elements[J]. IEEE Transactions on Electromagnetic Compatibility, 55, 1100-1106(2013).

    [33] Phudpong P, Hunter I C. Frequency-selective limiters using nonlinear bandstop filters[J]. IEEE Transactions on Microwave Theory and Techniques, 57, 157-164(2009).

    [34] Hu Fei. The selfbreakdown effect of filter HPM protection application[D]. Chengdu: University of Electronic Science Technology of China, 2021

    [35] Liu Monan. Research on high power microwave breakdown acteristics of cavity filter[D]. Chengdu: University of Electronic Science Technology of China, 2019

    [36] Liu Peiguo, Wan Shuanglin, Li Gaosheng, et al. Electromagic energy ion surface: 101754668A[P]. 20091231

    [37] Wu Zhaofeng, Xu Yanlin, Liu Peiguo. Design of ultra-wideband energy selective surface for protection of high intensity EM fields[J]. Journal of National University of Defense Technology, 45, 179-185(2023).

    [38] Wu Zhaofeng, Xu Yanlin, Liu Peiguo, et al. An ultra-broadband energy selective surface design method: from filter circuits to metamaterials[J]. IEEE Transactions on Antennas and Propagation, 71, 5865-5873(2023).

    [39] Wu Zhaofeng, Liu Peiguo, Deng Bowen, et al. An ultrabroadband energy selective surface with nonreciprocal performance for HIRF protection[J]. IEEE Transactions on Electromagnetic Compatibility, 65, 1202-1210(2023).

    [40] Tian Tao, Huang Xianjun, Cheng Kai, et al. Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure[J]. IEEE Antennas and Wireless Propagation Letters, 19, 2428-2432(2020).

    [41] Wan Shuanglin. The design of electromagic energy ive surfaces its applications in high power EMP protection[D]. Changsha: National University of Defense Technology, 2010

    [42] Wan Shuanglin, Liu Peiguo, He Jianguo. Study on the shielding effectiveness of metal mesh to linear polarized electromagnetic wave[J]. Safety & EMC, 66-68(2010).

    [43] Yang Cheng. Energy ive surface protection mechanism analysis[D]. Changsha: National University of Defense Technology, 2011

    [44] Goncalves B M F, Afonso M M, Coppoli E H R, et al. Periodic boundary conditions in the natural element method[J]. IEEE Transactions on Magnetics, 52, 1-4(2016).

    [45] Yang Cheng, Wendt T, De Stefano M, et al. Analysis and optimization of nonlinear diode grids for shielding of enclosures with apertures[J]. IEEE Transactions on Electromagnetic Compatibility, 63, 1884-1895(2021).

    [46] Hu Ning, Zhao Yuting, Zhang Jihong, et al. High-performance energy selective surface based on equivalent circuit design approach[J]. IEEE Transactions on Antennas and Propagation, 70, 4526-4538(2022).

    [47] Liu Chenxi. Design simulation of energy ive surface[D]. Changsha: National University of Defense Technology, 2015

    [48] Yang Cheng, Liu Peiguo, Huang Xianjun. A novel method of energy selective surface for adaptive HPM/EMP protection[J]. IEEE Antennas and Wireless Propagation Letters, 12, 112-115(2013).

    [49] Zhang Long, Wei Guanghui, Hu Xiaofeng, . Protection ability analysis on energy selective surface[J]. Transactions of Beijing Institute of Technology, 33, 1165-1170(2013).

    [50] Chen Zhenzhen, Chen Xing, Xu Guanghui. A spatial power limiter using a nonlinear frequency selective surface[J]. International Journal of RF and Microwave Computer-Aided Engineering, 28, e21205(2018).

    [51] Zhou Lin, Liu Liangliang, Shen Zhongxiang. High-performance energy selective surface based on the double-resonance concept[J]. IEEE Transactions on Antennas and Propagation, 69, 7658-7666(2021).

    [52] Zhao Chen, Wang Chaofu, Aditya S, et al. Power-dependent frequency-selective surface: concept, design, and experiment[J]. IEEE Transactions on Antennas and Propagation, 67, 3215-3220(2019).

    [53] Deng Feng, Xi Xiujuan, Li Jing, et al. A method of designing a field-controlled active frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 14, 630-633(2015).

    [54] Wu Huancheng, Hu Jinguang, Zhong Longquan, . Field-circuit co-simulation and experiment of electromagnetic energy selective surface[J]. High Power Laser and Particle Beams, 29, 093203(2017).

    [55] Gao Yang, Chen Xinwei. Structure design and simulation analysis of a novel electromagnetic energy selective surface[J]. Journal of Test and Measurement Technology, 35, 79-83(2021).

    [56] Wu Zhaofeng, Liu Peiguo, Lin Mingtuan, et al. A microwave field-induced nonlinear metamaterial with wafer integration level[J]. ACS Applied Materials & Interfaces, 15, 16189-16197(2023).

    [57] Zhou Qihui. Research on energy ive surface analysis of antenna integrated design[D]. Changsha: National University of Defense Technology, 2016

    [58] Wang Ke. Research on energy ive structure design navigation protection application[D]. Changsha: National University of Defense Technology, 2017

    [59] Yi Bo, Li Liying, Chen Ziqi. Research into strong electromagnetic radiation response of navigation antenna with loaded energy selective surface[J]. Shipboard Electronic Countermeasure, 45, 95-99(2022).

    [60] Deng Boweng, Lin Mingtuan, Zhang Jihong, et al. PIN-diode-based high-intensity radiation fields (HIRF) protection of a printed dipole antenna[J]. IEEE Transactions on Electromagnetic Compatibility, 63, 198-205(2021).

    [61] Zhang Jihong, Hu Ning, Wu Zhaofeng, et al. Adaptive high-impedance surface for prevention of waveguide's high-intensity wave[J]. IEEE Transactions on Antennas and Propagation, 69, 7679-7687(2021).

    [62] Zhang Jihong, Lin Mingtuan, Wu Zhaofeng, et al. Energy selective surface with power-dependent transmission coefficient for high-power microwave protection in waveguide[J]. IEEE Transactions on Antennas and Propagation, 67, 2494-2502(2019).

    [63] Kaushal A, Singh V. Excellent electromagnetic interference shielding performance of polypropylene/carbon fiber/multiwalled carbon nanotube nanocomposites[J]. Polymer Composites, 43, 3708-3715(2022).

    [64] Gill N, Gupta V, Tomar M, et al. Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band[J]. Composites Science and Technology, 192, 108113(2020).

    [65] Fan Xun, Gao Qiang, Zhang Yu, et al. Anisotropic microcellular epoxy/rGO-SCF aerogel foam with excellent compressibility and superior electromagnetic interference shielding performance[J]. Composites Science and Technology, 230, 109718(2022).

    [66] Qin Feng, Yan Zhiyang, Fan Jinfeng, et al. Highly uniform and stable transparent electromagnetic interference shielding film based on silver nanowire-PEDOT: PSS composite for high power microwave shielding[J]. Macromolecular Materials and Engineering, 306, 2000607(2021).

    Zhaofeng Wu, Yanlin Xu, Peiguo Liu, Song Zha. Review and prospect of electromagnetic protection technology development[J]. High Power Laser and Particle Beams, 2024, 36(4): 043001
    Download Citation