• Laser & Optoelectronics Progress
  • Vol. 59, Issue 5, 0530002 (2022)
Zhao Xue1、1、2、2、">">, Haiting Zhang1、1、2、2、">">, Maosheng Yang1、1、2、2、">">, Xiaoxian Song1、1、2、2、3、">">*, Jingjing Zhang1、1、2、2、">">, Yunxia Ye1、1、2、2、">">, Yunpeng Ren1、1、2、2、">">, Xudong Ren1、1、2、2、">">, and Jianquan Yao1、1、2、2、3、3、">">">
Author Affiliations
  • 1College of Information Science and Engineering, Jiangsu University, Zhenjiang , Jiangsu 212013, China
  • 2Institute of Micro-Nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang , Jiangsu 212013, China
  • 3School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202259.0530002 Cite this Article Set citation alerts
    Zhao Xue, Haiting Zhang, Maosheng Yang, Xiaoxian Song, Jingjing Zhang, Yunxia Ye, Yunpeng Ren, Xudong Ren, Jianquan Yao. Tunable Broad-Spectral Terahertz Absorber Based on Graphic Graphene[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0530002 Copy Citation Text show less
    References

    [1] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [2] Chen J, Yang M S, Li Y D et al. Tunable terahertz wave broadband absorber based on metamaterial[J]. Acta Physica Sinica, 68, 20191216(2019).

    [3] Chen H T, Padilla W J, Cich M J et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 3, 148-151(2009).

    [4] Cheng Y Z, Zuo X, Huang M L et al. Design of a photo-excited broadband tunable terahertz absorber[J]. Journal of Infrared and Millimeter Waves, 38, 97-102(2019).

    [5] Xu Z C, Gao R M, Ding C F et al. Photoexited switchable metamaterial absorber at terahertz frequencies[J]. Optics Communications, 344, 125-128(2015).

    [6] Wang C S, Jiang D F, Jiang X W. Polarization independent high absorption efficiency wide absorption bandwidth metamaterial absorber[J]. Laser & Optoelectronics Progress, 57, 031601(2020).

    [7] Gong J, Zong R, Li H et al. Dynamically tunable broadband terahertz metamaterial absorber based on vanadium dioxide[J]. Laser & Optoelectronics Progress, 58, 0316001(2021).

    [8] Xu Z H. Research and design of terahertz metamaterials based on graphene[D](2019).

    [9] Hu N, Wu F L, Bian L A et al. Dual broadband absorber based on graphene metamaterial in the terahertz range[J]. Optical Materials Express, 8, 3899-3909(2018).

    [10] Ding F, Dai J, Chen Y et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).

    [11] Zhang Y, Shi Y, Liang C H. Broadband tunable graphene-based metamaterial absorber[J]. Optical Materials Express, 6, 3036-3044(2016).

    [12] Fu P. Research on metamaterial terahertz absorber based on graphene[D], 15-18(2019).

    [13] Li H, Yu J, Chen Z. Broadband tunable terahertz absorber based on hybrid graphene-vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 47, 0903001(2020).

    [14] Huang L, Chen H T. A brief review on terahertz metamaterial perfect absorbers[J]. Terahertz Science and Technology, 6, 26-39(2013).

    [15] Low T, Avouris P. Graphene plasmonics for terahertz to mid-infrared applications[J]. ACS Nano, 8, 1086-1101(2014).

    [16] Wang T, Zhang Y. Dynamically tunable terahertz metasurface[J]. Journal of Terahertz Science and Electronic Information Technology, 17, 368-372(2019).

    [17] Cheng W, Li J S. Design of an optically tunable terahertz wave absorber[J]. Electronic Components and Materials, 32, 34-36, 53(2013).

    [18] Ferguson B, Zhang X C, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [19] Williams G P. Filling the THz gap-high power sources and applications[J]. Reports on Progress in Physics, 69, 301-326(2006).

    [20] Yan H T, Deng C, Guo L T et al. Design of terahertz rapid standoff imaging system[J]. Journal of Applied Optics, 37, 183-186(2016).

    [21] Piper J R, Fan S H. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance[J]. ACS Photonics, 1, 347-353(2014).

    [22] Chen M, Fan F, Yang L et al. Mechanically tunable terahertz plasmonic waveguide filter[J]. Chinese Journal of Lasers, 43, 0411001(2016).

    [23] Cui Z J, Wang Y, Zhu D Y et al. Perfect absorption conditions and absorption characteristics of terahertz metamaterial absorber[J]. Chinese Journal of Lasers, 46, 0614023(2019).

    [24] Koppens F H, Chang D E, García de Abajo F J. Graphene plasmonics: a platform for strong light-matter interactions[J]. Nano Letters, 11, 3370-3377(2011).

    Zhao Xue, Haiting Zhang, Maosheng Yang, Xiaoxian Song, Jingjing Zhang, Yunxia Ye, Yunpeng Ren, Xudong Ren, Jianquan Yao. Tunable Broad-Spectral Terahertz Absorber Based on Graphic Graphene[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0530002
    Download Citation