[1] Sizov D, Bhat R, Zah C. Gallium Indium NitrideBased Green Lasers[J]. Journal of Lightwave Technology, 2012, 30(5):679699.
[2] Ohta H, DenBaars S P, Nakamura S. Future of groupⅢ nitride semiconductor green laser diodes[J]. Journal of the Optical Society of America BOptical Physics, 27, B45B49, 2010
[3] Watson S, Gwyn S, Viola S, et al. InGaN/GaN Laser Diodes and their Applications[C]// 2018 20th International Conference on Transparent Optical Networks (ICTON). 2018.
[4] O’Brien D, Pary G, Stavrinou P. Optical hotspots speed up wireless communication[J]. Nature Photonics, 2007, 1(5): 245247.
[5] Watson S, Tan M M, Najda S P, et al. Visible light communications using a directly modulated 422 nm GaN laser diode[J]. Optics Letters, 2013, 38(19): 37923794.
[6] Najda S P, Perlin P, Leszczynski M, et al. GaN laser diodes for quantum sensors and optical atomic clocks[C]// Quantum Technologies and Quantum Information Science V, 2019.
[7] Wojciech Roga, John Jeffers. Quantum Information Science and Technology II[C]// Quantum Information Science & Technology II. Quantum Information Science and Technology II, 2016.
[8] Morishita Y, Nomura Y, Goto S, et al. Effect of hydrogen on the surfacediffusion length of Ga adatoms during molecularbeam epitaxy[J]. Applied Physics Letters, 1995, 67(17): 25002502.
[9] Queren D, Schillgalies M, Avramescu A, et al. Quality and thermal stability of thin InGaN films[J]. Journal of Crystal Growth, 2009, 311(10):29332936.
[10] Uwe Strauβ, Adrian Avramescu, Teresa Lermer, et al. Pros and cons of green InGaN laser on cplane GaN[J]. Physica Status Solidi (b), 2011, 248(3): 652657.
[11] Désirée Queren, Avramescu A, Schillgalies M, et al. Epitaxial design of 475 nm InGaN laser diodes with reduced wavelength shift[J]. Physica Status Solidi, 2010, 6(s2): S826S829.
[12] Li Z, Liu J, Feng M, et al. Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth[J]. Appl Phys Lett, 2013, 103(15): 152109.
[13] Liu J, Li Z, Zhang L, et al. Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region[J]. Appl Phys Express, 2014, 7(11): 111001.
[14] Yang J, Zhao D G, Jiang D S, et al. Emission efficiency enhanced by reducing the concentration of residual carbon impurities in InGaN/GaN multiple quantum well light emitting diodes[J]. Opt Express, 2016, 24(13): 13824.
[15] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Appl Phys, 2009, 105(8): 083507.
[16] Li J, Oder T N, Nakarmi M L, et al. Optical and electrical properties of Mgdoped ptype AlxGa1-xN[J]. Appl Phys Lett, 2002, 80(7): 12101212.
[17] Tian A, Liu J, Ikeda M, et al. Conductivity enhancement in AlGaN∶Mg by suppressing the incorporation of carbon impurity[J].Appl Phys Express, 2015, 8(5): 051001.
[18] Kuramoto M, Sasaoka C, Futagawa N, et al. Reduction of internal loss and threshold current in a laser diode with a ridge by selective regrowth (RiSLD)[J]. Phys Status Solidi A, 2002, 192: 329334.
[19] Schmidt O, Wolst O, Kneissl M, et al. Gain and photoluminescence spectroscopy in violet and ultraviolet InAlGaN laser structures[J]. Phys Status Solidi C, 2005, 2: 28912894.
[20] Kioupakis E, Rinke P, Schleife A, et al. Freecarrier absorption in nitrides from first principles[J]. Phys Rev B, 2010, 81: 241201.
[21] Kioupakis E, Rinke P, Van de Walle C G. Determination of internal loss in nitride lasers from first principles[J]. Appl Phys Express, 2010, 3: 082101.
[22] David A, Grundmann M J, Kaeding J F, et al. Carrier distribution in (0001)InGaN/GaN multiple quantum well lightemitting diodes[J]. Appl Phys Lett, 2008, 92: 053502.
[23] Meyaard D S, Lin G B, Shan Q, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based lightemitting diodes[J]. Appl Phys Lett, 2011, 99: 251115.
[24] Wang C H, Chang S P, Ku P H, et al. Hole transport improvement in InGaN/GaN lightemitting diodes by gradedcomposition multiple quantum barriers[J]. Appl Phys Lett, 2011, 99: 171106.
[25] Ikeda M, Zhang F, Zhou R, et al. Thermionic emission of carriers in InGaN/(In)GaN multiple quantum wells[J]. Jpn J Appl Phys, 2019, 58: SCCB03.
[26] Liu J P, Ryou J H, Dupuis R D, et al. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible lightemitting diodes[J]. Appl Phys Lett, 2008, 93: 021102.
[27] Zhou K, Ikeda M, Liu J, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Appl Phys Lett, 2014, 105:173510.
[28] Hager T, Binder M, Bruederl G, et al. Carrier transport in green AlInGaN based structures on cplane substrates[J]. Applied Physics Letters, 2013, 102(23):311.
[29] Hager T, Bruederl G, Lermer T, et al. Current dependence of electrooptical parameters in green and blue (AlIn)GaN laser diodes[J]. Applied Physics Letters, 2012, 101(17):4056.
[30] Zhang S, Xie E, Yan T, et al. Hole transport assisted by the piezoelectric field in In0.4Ga0.6N/GaN quantum wells under electrical injection[J]. Journal of Applied Physics, 2015, 118(12):125709.
[31] Cho Y H, Gainer G H, Fischer A J, et al. “Sshaped” temperaturedependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells[J]. Appl Phys Lett, 1998, 73: 13701372.
[32] Bai J, Wang T, Sakai S. Influence of the quantumwell thickness on the radiative recombination of InGaN/GaN quantum well structures[J]. Appl Phys, 2000, 88: 47294733.
[33] Seo Im J, Kollmer H, Off J, et al. Reduction of oscillator strength due to piezoelectric fields in GaNAlxGa1-xN quantum wells[J]. Phys Rev B, 1998, 57: R9435R9438.
[34] Peng L H, Chuang C W, Lou L H. Piezoelectric effects in the optical properties of strained InGaN quantum wells[J]. Appl Phys Lett, 1999, 74: 795797.
[35] Chang S J, Lai W C, Su Y K, et al. InGaNGaN multiquantumwell blue and green lightemitting diodes[J].IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(2):278283.
[36] Wang T, Bai J, Sakai S, et al. Investigation of the emission mechanism in InGaN/GaNbased lightemitting diodes[J]. Appl Phys Lett, 2001, 78: 2617619.
[38] Kioupakis, Emmanouil. Auger recombination and freecarrier absorption in nitrides from first principles[J]. American Physical Society, 2010, 81(24): 775780.
[39] Kioupakis E, Rinke P, Delaney K T, et al. Indirect Auger recombination as a cause of efficiency droop in nitride lightemitting diodes[J]. Applied Physics Letters, 2011, 98(16): 161107.
[40] Feng M X, Liu J P, Zhang S M, et al. Design considerations for GaNbased blue laser diodes with InGaN upper waveguide layer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 15007051500705.
[41] Liu J, Zhang L, Li D, et al. GaNbased blue laser diodes with 2.2 W of light output power under continuouswave operation[J]. IEEE Photonics Technology Letters, 2017(24): 11.
[42] Krames M R, Shchekin O B, MuellerMach R, et al. IEEE/OSA status and future of high power light emitting diodes for solid state lighting[J]. Journal of Display Technology, 2007, 3(2): 160175.
[43] Verzellesi G, Saguatti D, Meneghini M, et al. Efficiency droop in InGaN/GaN blue lightemitting diodes: Physical mechanisms and remedies[J]. Journal of Applied Physics, 2013, 114(7): 071101.
[44] Wang C H, Ke C C, Lee C Y, et al. Hole injection and efficiency droop improvement in InGaN/GaN lightemitting diodes by bandengineered electron blocking layer[J]. Applied Physics Letters, 2010, 97(26): 261103.
[45] Brüninghoff S,Tautz S,Sabathil M,et al.Temperature dependence of blue InGaN lasers[C]//SPIE OPTO:Integrated Optoelectronic Devices.Proc SPIE 7216,Gallium Nitride Materials and Devices IV,San Jose,California,USA.2009,7216:72161C.
[46] Nakamura S. InGaNbased blue laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(3):712718.
[47] Farrell R M, Haeger D A, Hsu P S, et al. Determination of internal parameters for AlGaNcladdingfree mplane InGaN/GaN laser diodes[J]. Appl Phys Lett, 2011, 99: 171115.
[48] Duff A I, Lymperakis L, Neugebauer J. Understanding and controlling indium incorporation and surface segregation on InxGa1-xN surfaces:An ab initio approach[J]. Phys Rev B, 2014, 89:085307.
[49] Stringfellow G B. Microstructures produced during the epitaxial growth of InGaN alloys[J]. Journal of Crystal Growth, 2010, 312(6):735749.
[50] Tian A, Liu J, Zhang L, et al. Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN∶Mg cladding layer[J]. Phys Status Solidi C, 2016, 13: 245247.
[51] Hu L, Ren X, Liu J, et al. Highpower hybrid GaNbased green laser diodes with ITO cladding layer[J]. Photon Res, 2020, 8: 279.
[53] Pohl U W. Epitaxy of semiconductors:introduction to physical principles[J]. Graduate Texts in Physics, 2013, 31(1): 4550.
[54] Graham W R, Ehrlich G. Surface selfdiffusion of atoms and atom pairs[J]. Physical Review Letters, 1973, 31(23): 14071408.
[55] Wang S C, Ehrlich G. Adatom motion to lattice steps: a direct view[J]. Physical Review Letters, 1993, 70(1): 4144.
[56] Liu S J, Wang E G, Woo C H, et al. Threedimensional SchwoebelEhrlich barrier[J]. Journal of ComputerAided Materials Design, 2000, 7(3): 195201.
[57] Liu S J, Huang H, Woo C H. SchwoebelEhrlich barrier: from two to three dimensions[J]. Applied Physics Letters, 2002, 80: 32953297.
[58] Oliver R A, Kappers M J, Humphreys C J, et al. Growth modes in heteroepitaxy of InGaN on GaN[J]. Appl Phys, 2005, 97: 013707.
[59] Oliver R A, Kappers M J, Humphreys C J, et al. The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy[J]. Cryst Growth, 2004, 272: 393399.
[60] Tian A, Liu J, Zhang L, et al. Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region[J]. Opt Express, 2017, 25: 415.
[61] Florescu D I, Ting S M, Merai V N, et al. InGaN quantum well epilayers morphological evolution under a wide range of MOCVD growth parameter sets[J]. Phys Status Solidi C, 2006, 3:18111814.
[62] Falta J, Schmidt T, Gangopadhyay S, et al. Cleaning and growth morphology of GaN and InGaN surfaces[J]. Phys Status Solidi B, 2011, 248: 18001809.
[63] Kadir A, Meissner C, Schwaner T, et al. Growth mechanism of InGaN quantum dots during metalorganic vapor phase epitaxy[J]. Journal of Crystal Growth, 2011, 334(1):4045.
[64] Pristovsek M, Kadir A, Meissner C, et al. Growth mode transition and relaxation of thin InGaN layers on GaN (0001)[J]. Journal of Crystal Growth, 2013, 372: 6572.
[65] Massabuau F C P, Davies M J, Oehler F, et al. The impact of trench defects in InGaN/GaN light emitting diodes and implications for the “green gap” problem[J]. Appl Phys Lett, 2014, 105: 112110.
[66] Massabuau F C P, Sahonta S L, TrinhXuan L, et al. Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures[J]. Appl Phys Lett, 2012, 101: 212107.
[67] Massabuau C P, TrinhXuan L, Lodie D, et al. Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells[J]. Journal of Applied Physics, 2013, 113(7): 3675.
[68] Suihkonen S, Svensk O, Lang T, et al. The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency[J]. Journal of Crystal Growth, 2007, 298: 740743.
[69] Suihkonen S, Lang T, Svensk O, et al. Control of the morphology of InGaN/GaN quantum wells grown by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2007,300: 324329.
[70] Taylor E, Fang F, Oehler F, et al. Composition and luminescence studies of InGaN epilayers grown at different hydrogen flow rates[J]. Semiconductor Science and Technology, 2013, 28: 065011.
[71] Scholz F, Off J, Fehrenbacher E, et al. Investigations on Structural Properties of GaInN/GaN Multi Quantum Well Structures[J]. Physics Status Solisi (a), 2000, 180: 315320.
[72] Liu J P, Wang Y T, Yang H, et al. Investigations on Vdefects in quaternary AlInGaN epilayers[J]. Applied Physics Letters, 2004, 84: 5449.
[73] Shiojiri M, Chuo C C, Hsu J T, et al. Structure and formation mechanism of V defects in multiple InGaN/GaN quantum well layers[J]. Journal of Applied Physics, 2006, 99: 073505.
[74] Florescu D I, Ting S M, Ramer J C, et al. Investigation of Vdefects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire[J]. Applied Physics Letters, 2003, 83: 33.
[75] Tian A, Liu J, Zhou R, et al. Green laser diodes with constant temperature growth of InGaN/GaN multiple quantum well active region[J]. Appl Phys Express, 2019, 12: 064007.
[76] Tian A, Hu L, Zhang L, et al. Design and growth of GaNbased blue and green laser diodes[J]. Science China Materials, 2020,63(8): 13481363.
[77] Jiang L G, Liu J P, Zhang L Q, et al. Suppression of substrate mode in GaNbased green laser diodes[J].Optics Express, 28(10):15497.
[78] Strauss U, Eichler C, Rumbolz C, et al. Beam quality of blue InGaN laser for projection[J]. Physica Status Solidi c, 2008, 5(6): 20772079.
[79] Lermer T, Schillgalies M, Breidenassel A, et al. Waveguide design of green InGaN laser diodes[J]. Physica Status Solidi, 2010, 207(6):13281331.
[80] Mehari S, Cohen D A, Becerra D L, et al. Demonstration of enhanced continuouswave operation of blue laser diodes on a semipolar 2021 GaN substrate using indiumtinoxide/thinpGaN cladding layers[J]. Optics Express, 2018, 26(2):1564.
[81] Murayama M, Nakayama Y, Yamazaki K, et al. Wattclass green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi (A) Applications and Materials, 2017, 215(10):1700513.11700513.5.
[82] Uwe Strauβ, Hager T, Georg Brüderl, et al. Recent advances in cplane GaN visible lasers[C]// Conference on Gallium Nitride Materials & Devices IX. 2014. p. 89861L.
[83] Kuramoto M, Kobayashi S, Akagi T, et al. Highpower GaNbased verticalcavity surfaceemitting lasers with AlInN/GaN distributed bragg reflectors[J]. Appl Sci, 2019, 9: 416.
[84] Muranaga W, Akagi T, Fuwa R, et al. GaNbased verticalcavity surfaceemitting lasers using ntype conductive AllnN/GaN bottom distributed Bragg reflectors with graded interfaces[J]. Japanese Journal of Applied Physics, 2019, 58(SC):SCCC01.1SCCC01.7.
[85] Elafandy R T, Kang J H, Li B, et al. Roomtemperature operation of cplane GaN vertical cavity surface emitting laser on conductive nanoporous distributed Bragg reflector[J]. Applied Physics Letters, 2020, 117(1):011101.
[86] Hamaguchi T, Nakajima H, Ito M, et al. Lateral carrier confinement of GaNbased verticalcavity surfaceemitting diodes using boron ion implantation[J]. Appl Phys, 2016 55(12):122101.
[87] Hayashi N, Ogimoto J, Matsui K, et al. A GaNbased VCSEL with a convex structure for optical guiding[J]. Physica Status Solidi(a), 2018, 215(10):1700648.
[88] Mei Y, Weng G E, Zhang B P, et al. Quantum dot verticalcavity surfaceemitting lasers covering the ‘green gap’[J]. Light Science & Applications, 2016, 6(1): e16199.
[89] Weng G E, Yang M, Liu J P, et al. Low threshold continuouswave lasing of yellowgreen InGaNQD verticalcavity surfaceemitting lasers[J]. Optics Express, 2016.
[90] Lu T C, Chen S W, Wu T T, et al. Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature[J]. Appl Phys Lett, 2010, 97: 071114.
[91] Kasahara D, Morita D, Kosugi T, et al. Demonstration of blue and green GaNbased verticalcavity surfaceemitting lasers by current injection at room temperature[J]. Appl Phys Express, 2011, 4: 072103.
[92] Liu W J, Hu X L, Ying L Y, et al. Room temperature continuous wave lasing of electrically injected GaNbased vertical cavity surface emitting lasers[J]. Appl Phys Lett, 2014, 104: 251116.
[93] Holder C, Speck J S, DenBaars S P, et al. Demonstration of nonpolar GaNbased verticalcavity surfaceemitting lasers[J]. Appl Phys Express 2012, 5: 092104.
[94] Onishi T, Imafuji O, Nagamatsu K, et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature[J]. IEEE Journal of Quantum Electron, 2012, 48: 11071112.
[95] Izumi S, Fuutagawa N, Hamaguchi T, et al. Roomtemperature continuouswave operation of GaNbased verticalcavity surfaceemitting lasers fabricated using epitaxial lateral overgrowth[J]. Appl Phys Express, 2015, 8: 062702.
[96] Leonard J T, Cohen D A, Yonkee B P, et al. Nonpolar IIInitride verticalcavity surfaceemitting lasers incorporating an ion implanted aperture[J]. Applied Physics Letters, 2015, 107(1): 1201.
[97] Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwattclass GaNbased blue verticalcavity surfaceemitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi, 2016, 213(5): 11701176.
[98] Hamaguchi, Tatsushi, Nakajima, et al. Submilliamperethreshold continuous wave operation of GaNbased verticalcavity surfaceemitting laser with lateral optical confinement by curved mirror[J]. Applied Physics Express, 2019, 12: 044004.
[99] Hamaguchi T, Hoshina Y, Hayashi K, et al. Roomtemperature continuouswave operation of green verticalcavity surfaceemitting lasers with a curved mirror fabricated on {20-21} semipolar GaN[J]. Applied Physics Express, 2020, 13(4).
[100] HolguínLerma, Jorge A, Khee N T, et al. Narrowline InGaN/GaN green laser diode with highorder distributedfeedback surface grating[J]. Applied Physics Express, 2019, 12: 042007.
[101] Deng Z J, Li J Z, Liao M L, et al. InGaN/GaN distributed feedback laser diodes with surface gratings and sidewall gratings[J]. Micromachines, 2019, 10(10):699.
[102] Li J, Huang F, Yang H, et al. The MOCVD overgrowth studies of IIINitride on Bragg grating for distributed feedback lasers[C]. Fourteenth National Conference on Laser Technology and Optoelectronics, 2019.
[103] Zhang H, Cohen D A, Chan P, et al. Continuouswave operation of a semipolar InGaN distributedfeedback blue laser diode with a firstorder indium tin oxide surface grating[J]. Optics Letters, 2019, 44(12):3106.
[104] Kang J H, Wenzel H, Freier E, et al. Continuous wave operation of DFB laser diodes based on GaN using 10th order laterally coupled surface gratings[J]. Optics Letters, 2020, 45(4): 385002.