• Advanced Photonics
  • Vol. 3, Issue 1, 016003 (2021)
Zhen Qiao1, Xuerui Gong1, Peng Guan2, Zhiyi Yuan1, Shilun Feng3, Yiyu Zhang1, Munho Kim1, Guo-En Chang4, and Yu-Cheng Chen1、5、*
Author Affiliations
  • 1Nanyang Technological University, School of Electrical and Electronic Engineering, Singapore
  • 2Shanghai Jiao Tong University, School of Electronic Information and Electrical Engineering, Shanghai, China
  • 3Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, State Key Laboratory of Transducer Technology, Shanghai, China
  • 4Taiwan Chung Cheng University, Department of Mechanical Engineering, Minhsiung, Chiayi, China
  • 5Nanyang Technological University, School of Chemical and Biomedical Engineering, Singapore
  • show less
    DOI: 10.1117/1.AP.3.1.016003 Cite this Article Set citation alerts
    Zhen Qiao, Xuerui Gong, Peng Guan, Zhiyi Yuan, Shilun Feng, Yiyu Zhang, Munho Kim, Guo-En Chang, Yu-Cheng Chen. Lasing action in microdroplets modulated by interfacial molecular forces[J]. Advanced Photonics, 2021, 3(1): 016003 Copy Citation Text show less
    References

    [1] T. Reynolds et al. Fluorescent and lasing whispering gallery mode microresonators for sensing applications. Laser Photonics Rev., 11, 1600265(2017).

    [2] U. Bog et al. On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink. Lab Chip, 13, 2701-2707(2013).

    [3] Y. F. Zhang et al. Tunable microlasers modulated by intracavity spherical confinement with chiral liquid crystal. Adv. Opt. Mater., 8, 1902184(2020).

    [4] Y.-C. Chen et al. Laser-emission imaging of nuclear biomarkers for high-contrast cancer screening and immunodiagnosis. Nat. Biomed. Eng., 3, 724-735(2017).

    [5] E. Ignesti et al. A new class of optical sensors: a random laser based device. Sci. Rep., 6, 35225(2016).

    [6] S. Nizamoglu et al. A simple approach to biological single-cell lasers via intracellular dyes. Adv. Opt. Mater., 3, 1197-1200(2015).

    [7] Q. Chen et al. An integrated microwell array platform for cell lasing analysis. Lab Chip, 17, 2814-2820(2017).

    [8] Z. Yuan et al. Lasing-encoded microsensor driven by interfacial cavity resonance energy transfer. Adv. Opt. Mater., 8, 1901596(2020).

    [9] Y. C. Chen, X. Fan. Biological lasers for biomedical applications. Adv. Opt. Mater., 7, 1900377(2019).

    [10] H. Azzouz et al. Levitated droplet dye laser. Opt. Express, 14, 4374-4379(2006).

    [11] D. McGloin. Droplet lasers: a review of current progress. Rep. Prog. Phys., 80, 054402(2017).

    [12] A. Jonáš et al. In vitro and in vivo biolasing of fluorescent proteins suspended in liquid microdroplet cavities. Lab Chip, 14, 3093-3100(2014).

    [13] S. Nizamoglu et al. All-biomaterial laser using vitamin and biopolymers. Adv. Mater., 25, 5943-5947(2013).

    [14] V. D. Ta et al. Multicolor lasing prints. Appl. Phys. Lett., 107, 221103(2015).

    [15] J. Zhao et al. Full-color laser displays based on organic printed microlaser arrays. Nat. Commun., 10, 870(2019).

    [16] T. V. Nguyen, V. D. Ta. High-quality factor, biological microsphere and microhemisphere lasers fabricated by a single solution process. Opt. Commun., 465, 125647(2020).

    [17] Z. Zhou et al. Organic printed core–shell heterostructure arrays: a universal approach to all-color laser display panels. Angew. Chem. Int. Ed., 59, 11814-11818(2020).

    [18] P. A. Alekseev et al. Half-disk laser: insight into the internal mode structure of laser resonators. Opt. Express, 26, 14433-14443(2018).

    [19] D. Leckband, J. Israelachvili. Intermolecular forces in biology. Q. Rev. Biophys., 34, 105-267(2001).

    [20] P. Ball. Water is an active matrix of life for cell and molecular biology. Proc. Natl. Acad. Sci. USA, 114, 13327-13335(2017).

    [21] K. A. Dill, J. L. MacCallum. The protein-folding problem, 50 years on. Science, 338, 1042-1046(2012).

    [22] A. Hinderliter, S. May. Cooperative adsorption of proteins onto lipid membranes. J. Phys. Condens. Mater., 18, S1257-S1270(2006).

    [23] A. Rimola et al. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments. Chem. Rev., 113, 4216-4313(2013).

    [24] Y. Yan et al. Albumin adsorption on CoCrMo alloy surfaces. Sci. Rep., 5, 18403(2016).

    [25] M. J. Limo et al. Interactions between metal oxides and biomolecules: from fundamental understanding to applications. Chem. Rev., 118, 11118-11193(2018).

    [26] D. Costa et al. Understanding small biomolecule–biomaterial interactions: a review of fundamental theoretical and experimental approaches for biomolecule interactions with inorganic surfaces. J. Biomed. Mater. Res. A, 101, 1210-1222(2013).

    [27] C. Mathe et al. Structural determinants for protein adsorption/non-adsorption to silica surface. PLoS ONE, 8, e81346(2013).

    [28] A. Sun, J. Lahann. Dynamically switchable biointerfaces. Soft Matter, 5, 1555-1561(2009).

    [29] I. T. S. Li, G. C. Walker. Signature of hydrophobic hydration in a single polymer. Proc. Natl. Acad. Sci. USA, 108, 16527-16532(2011).

    [30] J. Kim et al. A dynamic hydrophobic core orchestrates allostery in protein kinases. Sci. Adv., 3, e1600663(2017).

    [31] S. A. Harris, V. M. Kendon. Quantum-assisted biomolecular modelling. Philos. T. R. Soc. A, 368, 3581-3592(2010).

    [32] A. Kiraz et al. Spectral tuning of liquid microdroplets standing on a superhydrophobic surface using electrowetting. Appl. Phys. Lett., 92, 191104(2008).

    [33] A. Jonas et al. Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets. Langmuir, 27, 2150-2154(2011).

    [34] D. Cwikel et al. Comparing contact angle measurements and surface tension assessments of solid surfaces. Langmuir, 26, 15289-15294(2010).

    [35] D. Y. Kwok, A. W. Neumann. Contact angle interpretation in terms of solid surface tension. Colloids Surf. A, 161, 31-48(2000).

    [36] D. Khossravi, K. A. Connors. Solvent effects on chemical processes. 3. Surface-tension of binary aqueous organic-solvents. J. Solution Chem., 22, 321-330(1993).

    [37] X. X. Lin et al. Influence of water evaporation/absorption on the stability of glycerol-water marbles. RSC Adv., 9, 34465-34471(2019).

    [38] A. T. Palasz et al. The effect of macromolecular supplementation on the surface tension of TCM-199 and the utilization of growth factors by bovine oocytes and embryos in culture. Animal Reprod. Sci., 58, 229-240(2000).

    [39] I. D. Kamalanathan, P. J. Martin. Competitive adsorption of surfactant-protein mixtures in a continuous stripping mode foam fractionation column. Chem. Eng. Sci., 146, 291-301(2016).

    [40] Y.-C. Chen et al. Versatile tissue lasers based on high-Q Fabry–Pérot microcavities. Lab Chip, 17, 538-548(2017).

    [41] M. Aas et al. Optofluidic FRET lasers and their applications in novel photonic devices and biochemical sensing. IEEE J. Sel. Top. Quantum Electron., 22, 7000215(2016).

    [42] J. Chatterjee. Limiting conditions for applying the spherical section assumption in contact angle estimation. J. Colloid Interface Sci., 259, 139-147(2003).

    [43] M. Mastrangeli et al. Surface tension-driven self-alignment. Soft Matter, 13, 304-327(2017).

    [44] K. Takamura et al. Physical properties of aqueous glycerol solutions. J. Petrol. Sci. Eng, 98-99, 50-60(2012).

    [45] O. Parlak, A. P. F. Turner. Switchable bioelectronics. Biosens. Bioelectron., 76, 251-265(2016).

    [46] Y. Zhou et al. Multistimulus responsive biointerfaces with switchable bioadhesion and surface functions. ACS Appl. Mater. Inter., 12, 5447-5455(2020).

    [47] D. Chandler. Interfaces and the driving force of hydrophobic assembly. Nature, 437, 640-647(2005).

    [48] C. Q. Zhu et al. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proc. Natl. Acad. Sci. USA, 113, 12946-12951(2016).

    [49] M. Rabe et al. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci., 162, 87-106(2011).

    [50] J. Kher-Alden et al. Microspheres with atomic-scale tolerances generate hyperdegeneracy. Phys. Rev. X, 10, 031049(2020).

    Zhen Qiao, Xuerui Gong, Peng Guan, Zhiyi Yuan, Shilun Feng, Yiyu Zhang, Munho Kim, Guo-En Chang, Yu-Cheng Chen. Lasing action in microdroplets modulated by interfacial molecular forces[J]. Advanced Photonics, 2021, 3(1): 016003
    Download Citation