[1] D. Novovic, D.K. Aspinwall, R.C. Dewes, P. Bowen, B. Griffiths. The effect of surface and subsurface condition on the fatigue life of Ti–25V–15Cr–2Al–0.2C %wt alloy.
[2] E. Brinksmeier, F. Klocke, D.A. Lucca, J. Sölter, D. Meyer. Process signatures – a new approach to solve the inverse surface integrity problem in machining processes.
[3] B. Pan, K. Qian, H. Xie, A. Asundi. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review.
[4] T.A. Berfield, J.K. Patel, R.G. Shimmin, P.V. Braun, J. Lambros, N.R. Sottos. Fluorescent image correlation for nanoscale deformation measurements.
[5] D. Reagan, A. Sabato, C. Niezrecki, H.F. Wu, A.L. Gyekenyesi, P.J. Shull, T.-Y. Yu. Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges.
[6] J. Yang, K. Bhattacharya. Augmented Lagrangian digital image correlation.
[7] H. Jin. Theoretical development for pointwise digital image correlation.
[8] Y.L. Dong, B. Pan. A review of speckle pattern fabrication and assessment for digital image correlation.
[9] J.W. Goodman.
[10] T. Fricke-Begemann. Three-dimensional deformation field measurement with digital speckle correlation.
[11] A. Tausendfreund, D. Stöbener, A. Fischer. In-process measurement of three-dimensional deformations based on speckle photography.
[12] L. Larsson, M. Sjödahl, Fredrik Thuvander. Microscopic 3-D displacement field measurements using digital speckle photography.
[13] S. Fu. Single-axis combined shearography and digital speckle photography instrument for full surface strain characterization.
[14] A. Fischer. Fundamental uncertainty limit for speckle displacement measurements.
[15] L. Schweickhardt, A. Tausendfreund, D. Stobener, A. Fischer. Noise reduction in high-resolution speckle displacement measurements through ensemble averaging.
[16] G. Alexe, A. Tausendfreund, D. Stobener, L. Langstadtler, M. Herrmann, C. Schenck, A. Fischer. Uncertainty and resolution of speckle photography on micro samples.
[17] N. Bender, H. Ylmaz, Y. Bromberg, H. Cao. Customizing speckle intensity statistics.
[18] M.R. Viotti, G.H. Kaufmann. Accuracy and sensitivity of a hole drilling and digital speckle pattern interferometry combined technique to measure residual stresses.
[19] J.L. Song, J.H. Yang, F. Liu, K. Lu. High temperature strain measurement method by combining digital image correlation of laser speckle and improved RANSAC smoothing algorithm.
[20] A. Tausendfreund, D. Stöbener, A. Fischer. Precise in-process strain measurements for the investigation of surface modification mechanisms.
[21] A. Tausendfreund, F. Borchers, E. Kohls, S. Kuschel, D. Stöbener, C. Heinzel, A. Fischer. Investigations on material loads during grinding by speckle photography.
[22] M. Sjödahl. Accuracy in electronic speckle photography.
[23] X. Xu, Y. Su, Q. Zhang. Theoretical estimation of systematic errors in local deformation measurements using digital image correlation.
[24] J. Tong. Full-field characterisation of crack tip deformation and fatigue crack growth using digital image correlation-a review.
[25] M.S. Kirugulige, H.V. Tippur. Measurement of fracture parameters for a mixed-mode crack driven by stress waves using image correlation technique and high-speed digital photography.
[26] J. Blaber, B. Adair, A. Antoniou. Ncorr: Open-source 2D digital image correlation Matlab software.
[27] H. Lu, P.D. Cary. Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient.
[28] H.W. Schreier, M.A. Sutton. Systematic errors in digital image correlation due to undermatched subset shape functions.
[29] L. Yu, B. Pan. The errors in digital image correlation due to overmatched shape functions.
[30] A.K. Fung, M.F. Chen. Numerical simulation of scattering from simple and composite random surfaces.
[31] P. Zhou, K. Goodson. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation.
[32] A. Tausendfreund, F. Frerichs, D. Stöbener, A. Fischer. Experimental validation of workpiece deformation simulations by means of rigorous boundary condition analysis.