• Chinese Journal of Lasers
  • Vol. 51, Issue 16, 1602307 (2024)
Shuguang Yao1、2、*, Yunhui Dong1、2、**, Xianglong Li3, and Minhan Xie1、2
Author Affiliations
  • 1Key Laboratory of Traffic Safety on Track, Ministry of Education, Central South University, Changsha 410075, Hunan , China
  • 2School of Traffic & Transportation Engineering, Central South University, Changsha 410075, Hunan , China
  • 3State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan , China
  • show less
    DOI: 10.3788/CJL231057 Cite this Article Set citation alerts
    Shuguang Yao, Yunhui Dong, Xianglong Li, Minhan Xie. Causes of Defects in Selective Laser Melting of AlSi10Mg[J]. Chinese Journal of Lasers, 2024, 51(16): 1602307 Copy Citation Text show less

    Abstract

    Objective

    The parameters for selective laser melting (SLM) directly affect the morphology and microstructure of the melt-forming process, which in turn affect the mechanical properties of the formed structure. Metal powder rapidly heats up and melts under high-speed laser irradiation, forming a metal molten pool. The complex heat and material exchange processes inside and outside the molten pool are difficult to detect in real-time using monitoring instruments. To address the defects generated during the SLM forming process of an AlSi10Mg alloy, this study employed experimental and numerical simulation methods to investigate the effects of forming parameters such as laser power and scanning speed on the morphology of single- and double-channel of the AlSi10Mg alloy.

    Methods

    FS271M laser selective melting equipment was used for single- and double-channel SLM forming of the AlSi10Mg powder. The aluminum substrate was preheated to 130 ℃, the forming cavity was filled with high-purity argon gas as a protective gas, and the oxygen volume fraction was controlled to be less than 0.15%. Table 2 lists the forming parameters. The melt length was set to 20 mm. To facilitate subsequent observation, 1 mm spacing was set for single-melt scanning, and the forming process was repeated five times. After forming and cooling, the morphology of the melt was observed and analyzed using an AM7031MT digital microscope. In addition, Flow-3D v11.1 software was used to simulate the single-channel laser selective melting forming process. A numerical simulation was conducted to investigate the physical effects and phenomena such as thermal radiation, heat conduction, solid-liquid phase transition, molten pool evaporation, gravity, surface tension, and the Marangoni effect derived from the SLM process.

    Results and Discussions

    Under different scanning speeds using a laser power of 300 W, the overall continuity of the formed melt is good, no obvious spheroidization is observed, and the degree of overlap is high. As the laser-scanning speed decreases, the width of the melt gradually increases, and a clear ripple morphology is generated at a scanning speed of 700 mm/s. When a 100 W power laser is used for melt forming, the discontinuity and spheroidization of the melt are more severe. The width of the laser heat-affected zone decreases with an increase in the laser scanning speed. The lower the scanning speed, the more obvious is the degree of oxidation and blackening of the powder molten pool. The oxidation effect of the AlSi10Mg powder during processing is a major reason for the low density of the formed structural components. In practical experiments and production, the first-layer premelting method can be adopted to consume as much residual oxygen in the cavity as possible, reducing negative oxidation effects during the molding process. Under the action of a low scanning speed and high energy density laser, the spattering and airflow of the molten pool become more intense, making it easier to produce small-particle spheroidization defects on the forming plane. The keyhole depth generated by the metal molten pool under steam recoil pressure can reach 100 μm. As the laser moves, the molten pool rapidly cools and solidifies due to the high thermal conductivity of the aluminum alloy materials. If the keyhole is not completely filled by the molten pool fluid, pore defects form. Therefore, avoiding keyhole generation while ensuring the continuity of the melt path is necessary. The discontinuity of the melt path is mainly caused by insufficient melting of the powder layer. Reducing the thickness of the powder layer can improve the discontinuity caused by insufficient energy. However, the selection of SLM forming parameters should consider the product-forming efficiency while ensuring the quality of structure forming. Reducing the thickness of the powder layer prolongs the structure-forming time and affects the forming efficiency, and increasing the preheating temperature reduces the energy required for melting. To investigate the effects of the preheating temperature on the morphology of the formed channel, a laser power of 100 W and scanning speed of 800 mm/s were selected as scanning process parameters, and the preset environmental temperature T0 was gradually increased for calculation. At T0=500 K, the discontinuity phenomenon in the forming area is eliminated.

    Conclusions

    This study investigated the single-layer melt forming of AlSi10Mg powder material through experimental and numerical simulation methods. It was found that the surface tension and melt recoil pressure play crucial roles in the evolution and motion of the molten pool. Even when high-purity argon gas is used as the protective gas for the experiment, because of the oxidizability of the AlSi10Mg material, residual oxygen still affects the quality of the melt forming. Therefore, the oxygen content in the forming cavity should be minimized as much as possible prior to forming. Because the AlSi10Mg alloy powder has a weak laser absorption ability, the energy absorption rate was set to 12% in this study. For a given powder bed with a thickness of 50 μm, a mobile laser beam with a linear energy density of 200 J/m is required to completely melt the powder layer. Under low-power 100 W laser scanning, because of the low energy density of the laser, the melt channel is prone to discontinuity and large-scale spheroidization. Increasing the input energy density by reducing the scanning speed does not effectively solve the problem of uneven melt channels. Obtaining a smoother filling in the keyhole formed under low-speed scanning is difficult, which reduces the quality of the melt channel formation. By increasing the preheating temperature, the laser line energy density required for melting can be reduced, and the morphology of the melt formed at low power can be improved.

    Shuguang Yao, Yunhui Dong, Xianglong Li, Minhan Xie. Causes of Defects in Selective Laser Melting of AlSi10Mg[J]. Chinese Journal of Lasers, 2024, 51(16): 1602307
    Download Citation