• Advanced Photonics
  • Vol. 4, Issue 2, 024001 (2022)
Jaekyung Kim1、†, Junhwa Seong1, Younghwan Yang1, Seong-Won Moon1, Trevon Badloe1, and Junsuk Rho1、2、3、*
Author Affiliations
  • 1Pohang University of Science and Technology, Department of Mechanical Engineering, Pohang, Republic of Korea
  • 2Pohang University of Science and Technology, Department of Chemical Engineering, Pohang, Republic of Korea
  • 3POSCO–POSTECH–RIST Center for Flat Optics and Metaphotonics, Pohang, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.4.2.024001 Cite this Article Set citation alerts
    Jaekyung Kim, Junhwa Seong, Younghwan Yang, Seong-Won Moon, Trevon Badloe, Junsuk Rho. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 2022, 4(2): 024001 Copy Citation Text show less
    References

    [1] J. Sung, G.-Y. Lee, B. Lee. Progresses in the practical metasurface for holography and lens. Nanophotonics, 8, 1701-1718(2019).

    [2] H.-T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [3] S.-W. Moon et al. Recent progress on ultrathin metalenses for flat Optics. iScience, 23, 101877(2020).

    [4] G. Yoon et al. Recent progress on metasurfaces: applications and fabrication. J. Phys. Appl. Phys., 54, 383002(2021).

    [5] I. Kim et al. Outfitting next generation displays with optical metasurfaces. ACS Photonics, 5, 3876-3895(2018).

    [6] D. Lee et al. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Adv., 2, 605-625(2020).

    [7] H. Jeong et al. Emerging advanced metasurfaces: alternatives to conventional bulk optical devices. Microelectron. Eng., 220, 111146(2020).

    [8] J. Kim et al. Geometric and physical configurations of meta-atoms for advanced metasurface holography. InfoMat, 3, 739-754(2021).

    [9] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604-620(2020).

    [10] N. Mahmood et al. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale, 10, 18323-18330(2018).

    [11] J. Mun et al. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl., 9, 139(2020).

    [12] Z. H. Jiang et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates. Sci. Rep., 4, 7511(2014).

    [13] F. Qin et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv., 2, e1501168(2016).

    [14] T. Stolt et al. Backward phase-matched second-harmonic generation from stacked metasurfaces. Phys. Rev. Lett., 126, 033901(2021).

    [15] Y. Yang et al. Ultra-sharp circular dichroism induced by twisted layered C4 oligomers. Adv. Theory Simul., 3, 1900229(2020).

    [16] J. Bohn et al. Active tuning of spontaneous emission by Mie-resonant dielectric metasurfaces. Nano Lett., 18, 3461-3465(2018).

    [17] K.-T. Lee et al. Electrically biased silicon metasurfaces with magnetic Mie resonance for tunable harmonic generation of light. ACS Photonics, 6, 2663-2670(2019).

    [18] M. Anzan-Uz-Zaman et al. A novel approach to Fabry–Pérot-resonance-based lens and demonstrating deep-subwavelength imaging. Sci. Rep., 10, 10769(2020).

    [19] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [20] G. Yoon et al. Geometric metasurface enabling polarization independent beam splitting. Sci. Rep., 8, 9468(2018).

    [21] W. S. L. Lee et al. Broadband terahertz circular-polarization beam splitter. Adv. Opt. Mater., 6, 1700852(2018).

    [22] M. Kim, D. Lee, J. Rho. Spin hall effect under arbitrarily polarized or unpolarized light. Laser Photonics Rev., 15, 2100138(2021).

    [23] S. So et al. On-demand design of spectrally sensitive multiband absorbers using an artificial neural network. Photonics Res., 9, B153-B158(2021).

    [24] T. Badloe, I. Kim, J. Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Sci. Rep., 10, 4522(2020).

    [25] D. Lee et al. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsyst. Nanoeng., 7, 14(2021).

    [26] B. Ko et al. Employing vanadium dioxide nanoparticles for flexible metasurfaces with switchable absorption properties at near-infrared frequencies. J. Opt., 22, 114002(2020).

    [27] T. Badloe, I. Kim, J. Rho. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Phys. Chem. Chem. Phys., 22, 2337-2342(2020).

    [28] D. Lee et al. Polarization-sensitive tunable absorber in visible and near-infrared regimes. Sci. Rep., 8, 12393(2018).

    [29] G. Yoon et al. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Converg., 4, 36(2017).

    [30] G. Yoon et al. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 15, 698-706(2021).

    [31] G. Yoon et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [32] G. Yoon et al. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics, 5, 1643-1647(2018).

    [33] M. A. Ansari et al. A spin-encoded all-dielectric metahologram for visible light. Laser Photonics Rev., 13, 1900065(2019).

    [34] I. Kim et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv., 7, eabe9943(2021).

    [35] M. A. Naveed et al. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsyst. Nanoeng., 7, 5(2021).

    [36] I. Kim et al. Dual-band operating metaholograms with heterogeneous meta-atoms in the visible and near-infrared. Adv. Opt. Mater., 9, 2100609(2021).

    [37] H. S. Khaliq et al. Giant chiro-optical responses in multipolar-resonances-based single-layer dielectric metasurfaces. Photonics Res., 9, 1667-1674(2021).

    [38] H. S. Khaliq et al. Manifesting simultaneous optical spin conservation and spin isolation in diatomic metasurfaces. Adv. Opt. Mater., 9, 2002002(2021).

    [39] B. Xiong et al. Realizing colorful holographic mimicry by metasurfaces. Adv. Mater., 33, 2005864(2021).

    [40] H. Cai et al. Polarization-insensitive medium-switchable holographic metasurfaces. ACS Photonics, 8, 2581-2589(2021).

    [41] M. Kim et al. Visibly transparent radiative cooler under direct sunlight. Adv. Opt. Mater., 9, 2002226(2021).

    [42] S. So et al. Inverse design of ultra-narrowband selective thermal emitters designed by artificial neural networks. Opt. Mater. Express, 11, 1863-1873(2021).

    [43] M. Kim et al. Switchable diurnal radiative cooling by doped VO2. Opto-Electron. Adv., 4, 200006(2021). https://doi.org/10.29026/oea.2021.200006

    [44] I. Kim et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [45] M. Kim et al. Spin Hall effect of light with near-unity efficiency in the microwave. Laser Photonics Rev., 15, 2000393(2021).

    [46] M. Kim et al. Observation of enhanced optical spin Hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 6, 2530-2536(2019).

    [47] J. Jang et al. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 14, 15317-15326(2020).

    [48] J. Jang et al. Self-powered humidity sensor using chitosan-based plasmonic metal–hydrogel–metal filters. Adv. Opt. Mater., 8, 1901932(2020).

    [49] C. Jung et al. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability. Nanophotonics, 10, 919-926(2021).

    [50] T. Lee et al. Nearly perfect transmissive subtractive coloration through the spectral amplification of Mie scattering and lattice resonance. ACS Appl. Mater. Interfaces, 13, 26299-26307(2021).

    [51] D. Lee et al. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy, 79, 105426(2021).

    [52] J. Jang et al. Full and gradient structural colouration by lattice amplified gallium nitride Mie-resonators. Nanoscale, 12, 21392-21400(2020).

    [53] W. T. Chen et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [54] H. Ren et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [55] A. C. Overvig et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [56] K. Kim et al. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces, 11, 26109-26115(2019).

    [57] Y. Yang et al. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Adv. Mater., 33, 2005893(2021).

    [58] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [59] B. H. Chen et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett., 17, 6345-6352(2017).

    [60] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [61] Q. He, S. Sun, L. Zhou. Tunable/reconfigurable metasurfaces: physics and applications. Research, 2019, 1849272(2019).

    [62] T. Badloe et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv. Photonics Res., 2, 2000205(2021).

    [63] H.-H. Hsiao, C. H. Chu, D. P. Tsai. Fundamentals and applications of metasurfaces. Small Methods, 1, 1600064(2017).

    [64] Q. He et al. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [65] M. L. Tseng et al. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [66] W.-J. Joo et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 370, 459-463(2020).

    [67] H. Gao et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci. Adv., 6, eaba8595(2020).

    [68] G.-Y. Lee, J. Sung, B. Lee. Metasurface optics for imaging applications. MRS Bull., 45, 202-209(2020).

    [69] B. Yao et al. Spin-decoupled metalens with intensity-tunable multiple focal points. Photonics Res., 9, 1019-1032(2021).

    [70] W. Wang et al. Spin-selected and spin-independent dielectric metalenses. J. Opt., 20, 095102(2018).

    [71] B. Groever et al. High-efficiency chiral meta-lens. Sci. Rep., 8, 7240(2018).

    [72] R. Fu et al. Reconfigurable step-zoom metalens without optical and mechanical compensations. Opt. Express, 27, 12221-12230(2019).

    [73] L. Yu et al. Spin angular momentum controlled multifunctional all-dielectric metasurface doublet. Laser Photonics Rev., 14, 1900324(2020).

    [74] T. Zhou et al. Helicity multiplexed terahertz multi-foci metalens. Opt. Lett., 45, 463-466(2020).

    [75] J. Zhang et al. Polarization-enabled tunable focusing by visible-light metalenses with geometric and propagation phase. J. Opt., 21, 115102(2019).

    [76] Y. A. Zhang et al. Dual-layer electrode-driven liquid crystal lens with electrically tunable focal length and focal plane. Opt. Commun., 412, 114-120(2018).

    [77] M. Bosch et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces. Nano Lett., 21, 3849-3856(2021).

    [78] Z. Shen et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv. Photonics, 2, 036002(2020).

    [79] C.-Y. Fan et al. Electrically modulated varifocal metalens combined with twisted nematic liquid crystals. Opt. Express, 28, 10609-10617(2020).

    [80] M. Sun et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals. Sci. Rep., 9, 8673(2019).

    [81] S. Zhou et al. Liquid crystal integrated metalens with dynamic focusing property. Opt. Lett., 45, 4324-4327(2020).

    [82] T. Badloe et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv. Sci., 8, 2102646(2021).

    [83] W. Liu et al. Graphene-enabled electrically controlled terahertz meta-lens. Photonics Res., 6, 703-708(2018).

    [84] P. Ding et al. Graphene aperture-based metalens for dynamic focusing of terahertz waves. Opt. Express, 26, 28038-28050(2018).

    [85] S. Park et al. Electrically focus-tuneable ultrathin lens for high-resolution square subpixels. Light Sci. Appl., 9, 98(2020).

    [86] D. Chen et al. Continuously tunable metasurfaces controlled by single electrode uniform bias-voltage based on nonuniform periodic rectangular graphene arrays. Opt. Express, 28, 29306-29317(2020).

    [87] Z. Zhang et al. Graphene-enabled electrically tunability of metalens in the terahertz range. Opt. Express, 28, 28101-28112(2020).

    [88] Z. Huang et al. Dynamical tuning of terahertz meta-lens assisted by graphene. J. Opt. Soc. Am. B, 34, 1848-1854(2017).

    [89] S. Park et al. Focus-tunable planar lenses by controlled carriers over exciton. Adv. Opt. Mater., 9, 2001526(2021).

    [90] N. Xu et al. Electrically-driven zoom metalens based on dynamically controlling the phase of barium titanate (BTO) column antennas. Nanomaterials, 11, 729(2021).

    [91] C. Huang et al. Graphene-integrated reconfigurable metasurface for independent manipulation of reflection magnitude and phase. Adv. Opt. Mater., 9, 2001950(2021).

    [92] H. Chen et al. Microwave programmable graphene metasurface. ACS Photonics, 7, 1425-1435(2020).

    [93] B. Zeng et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl., 7, 51(2018).

    [94] Z. Su et al. Complete control of Smith-Purcell radiation by graphene metasurfaces. ACS Photonics, 6, 1947-1954(2019).

    [95] W. Ma et al. Dual-band light focusing using stacked graphene metasurfaces. ACS Photonics, 4, 1770-1775(2017).

    [96] H.-S. Ee, R. Agarwal. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 16, 2818-2823(2016).

    [97] K. Iwami et al. Demonstration of focal length tuning by rotational varifocal moiré metalens in an ir-A wavelength. Opt. Express, 28, 35602-35614(2020).

    [98] S. Colburn, A. Zhan, A. Majumdar. Varifocal zoom imaging with large area focal length adjustable metalenses. Optica, 5, 825-831(2018).

    [99] E. Arbabi et al. “MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [100] M. Y. Shalaginov et al. Reconfigurable all-dielectric metalens with diffraction-limited performance. Nat. Commun., 12, 1225(2021).

    [101] S. Qin et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3. Opt. Express, 29, 7925-7934(2021). https://doi.org/10.1364/OE.420014

    [102] Z. Guanxing et al. Reconfigurable metasurfaces with mechanical actuations: towards flexible and tunable photonic devices. J. Opt., 23, 013001(2020).

    [103] P. Gutruf et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano, 10, 133-141(2016).

    [104] S. M. Kamali et al. Highly tunable elastic dielectric metasurface lenses. Laser Photonics Rev., 10, 1002-1008(2016).

    [105] F. Cheng et al. Mechanically tunable focusing metamirror in the visible. Opt. Express, 27, 15194-15204(2019).

    [106] S. Wei et al. A varifocal graphene metalens for broadband zoom imaging covering the entire visible region. ACS Nano, 15, 4769-4776(2021).

    [107] Y. Wei et al. Compact optical polarization-insensitive zoom metalens doublet. Adv. Opt. Mater., 8, 2000142(2020).

    [108] Y. Guo et al. Experimental demonstration of a continuous varifocal metalens with large zoom range and high imaging resolution. Appl. Phys. Lett., 115, 163103(2019).

    [109] N. Yilmaz et al. Rotationally tunable polarization-insensitive single and multifocal metasurface. J. Opt., 21, 045105(2019).

    [110] Y. Cui et al. Reconfigurable continuous-zoom metalens in visible band. Chin. Opt. Lett., 17, 111603(2019).

    [111] S. Colburn, A. Majumdar. Simultaneous achromatic and varifocal imaging with quartic metasurfaces in the visible. ACS Photonics, 7, 120-127(2020).

    [112] T. Roy et al. Dynamic metasurface lens based on MEMS technology. APL Photonics, 3, 021302(2018).

    [113] Z. Han et al. MEMS-actuated metasurface Alvarez lens. Microsyst. Nanoeng., 6, 79(2020).

    [114] C. Meng et al. Dynamic piezoelectric MEMS-based optical metasurfaces. Sci. Adv., 7, eabg5639(2021).

    [115] Q. Wang et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 10, 60-65(2016).

    [116] W. Bai et al. Actively tunable metalens array based on patterned phase change materials. Appl. Sci., 9, 4927(2019).

    [117] W. Bai et al. Tunable duplex metalens based on phase-change materials in communication range. Nanomaterials, 9, 993(2019).

    [118] W. Bai et al. Near-infrared tunable metalens based on phase change material Ge2Sb2Te5. Sci. Rep., 9, 5368(2019). https://doi.org/10.1038/s41598-019-41859-x

    [119] F.-Z. Shu et al. Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev., 15, 2100155(2021).

    [120] P.-A. Blanche et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature, 468, 80-83(2010).

    [121] P. Genevet, F. Capasso. Holographic optical metasurfaces: a review of current progress. Rep. Prog. Phys., 78, 024401(2015).

    [122] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [123] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-249(1972).

    [124] J. R. Fienup. Phase retrieval algorithms: a comparison. Appl. Opt., 21, 2758-2769(1982).

    [125] Y. Yifat et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. Nano Lett., 14, 2485-2490(2014).

    [126] Q. Song et al. Plasmonic topological metasurface by encircling an exceptional point. Science, 373, 1133-1137(2021).

    [127] J. Scheuer. Metasurfaces-based holography and beam shaping: engineering the phase profile of light. Nanophotonics, 6, 137-152(2017).

    [128] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [129] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [130] B. Wang et al. Polarization-controlled color-tunable holograms with dielectric metasurfaces. Optica, 4, 1368-1371(2017).

    [131] Q. Wang et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [132] Z.-L. Deng et al. Diatomic metasurface for vectorial holography. Nano Lett., 18, 2885-2892(2018).

    [133] R. Zhao et al. Multichannel vectorial holographic display and encryption. Light Sci. Appl., 7, 95(2018).

    [134] X. Zhang et al. Direct polarization measurement using a multiplexed Pancharatnam–Berry metahologram. Optica, 6, 1190-1198(2019).

    [135] P. Zheng et al. Metasurface-based key for computational imaging encryption. Sci. Adv., 7, eabg0363(2021).

    [136] L. Jin et al. Dielectric multi-momentum meta-transformer in the visible. Nat. Commun., 10, 4789(2019).

    [137] H. Ren et al. Metasurface orbital angular momentum holography. Nat. Commun., 10, 2986(2019).

    [138] H. Zhou et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano, 14, 5553-5559(2020).

    [139] Q. Xiao et al. Orbital‐angular‐momentum‐encrypted holography based on coding information metasurface. Adv. Opt. Mater., 9, 2002155(2021).

    [140] G. Qu et al. Reprogrammable meta-hologram for optical encryption. Nat. Commun., 11, 5484(2020).

    [141] X. Li et al. Code division multiplexing inspired dynamic metasurface holography. Adv. Funct. Mater., 31, 2103326(2021).

    [142] P. Georgi et al. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [143] S. M. Kamali et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X, 7, 041056(2017).

    [144] C. Jung et al. Metasurface-driven optically variable devices. Chem. Rev., 121, 13013-13050(2021).

    [145] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [146] G. Tricoles. Computer generated holograms: an historical review. Appl. Opt., 26, 4351-4360(1987).

    [147] J. Hahn et al. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt. Express, 16, 12372-12386(2008).

    [148] S.-Q. Li et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [149] C. Zou et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces. ACS Photonics, 6, 1533-1540(2019).

    [150] J. Li et al. Electrically-controlled digital metasurface device for light projection displays. Nat. Commun., 11, 3574(2020).

    [151] Y. Hu et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region. Nano Lett., 21, 4554-4562(2021).

    [152] I. Kim et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat. Commun., 12, 3614(2021).

    [153] S. Zhu et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption. Opt. Express, 29, 9553-9564(2021).

    [154] L. Li et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [155] R. Kaissner et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci. Adv., 7, eabd9450(2021).

    [156] M. Zhang et al. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci., 5, 1800835(2018).

    [157] X. Liu et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface. Adv. Opt. Mater., 7, 1900175(2019).

    [158] F. Zhang et al. Multistate switching of photonic angular momentum coupling in phase‐change metadevices. Adv. Mater., 32, 1908194(2020).

    [159] C. Choi et al. Hybrid state engineering of phase‐change metasurface for all-optical cryptography. Adv. Funct. Mater., 31, 2007210(2021).

    [160] J. Li et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 4, eaar6768(2018).

    [161] T. Li et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels. Opt. Express, 27, 21153-21162(2019).

    [162] J. Li et al. Magnesium-based metasurfaces for dual-function switching between dynamic holography and dynamic color display. ACS Nano, 14, 7892-7898(2020).

    [163] S. C. Malek, H.-S. Ee, R. Agarwal. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett., 17, 3641-3645(2017).

    [164] I. Kim et al. Stimuli‐responsive dynamic metaholographic displays with designer liquid crystal modulators. Adv. Mater., 32, 2004664(2020).

    [165] Y. Zhang et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol., 16, 661-666(2021).

    [166] Y. Wang et al. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol., 16, 667-672(2021).

    [167] J. Karst et al. Electrically switchable metallic polymer nanoantennas. Science, 374, 612-616(2021).

    [168] W. Ma, F. Cheng, Y. Liu. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano, 12, 6326-6334(2018).

    [169] S. Molesky et al. Inverse design in nanophotonics. Nat. Photonics, 12, 659-670(2018).

    [170] S. So et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).

    [171] J. Noh et al. Design of a transmissive metasurface antenna using deep neural networks. Opt. Mater. Express, 11, 2310-2317(2021).

    [172] S. So, J. Mun, J. Rho. Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS Appl. Mater. Interfaces, 11, 24264-24268(2019).

    [173] S. So, J. Rho. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics, 8, 1255-1261(2019).

    [174] W. Ma et al. Deep learning for the design of photonic structures. Nat. Photonics, 15, 77-90(2021).

    [175] Y. Xu et al. Interfacing photonics with artificial intelligence: an innovative design strategy for photonic structures and devices based on artificial neural networks. Photonics Res., 9, B135-B152(2021).

    [176] X. An et al. Broadband achromatic metalens design based on deep neural networks. Opt. Lett., 46, 3881-3884(2021).

    [177] M. M. R. Elsawy et al. Multiobjective statistical learning optimization of RGB metalens. ACS Photonics, 8, 2498-2508(2021).

    [178] W. Ma et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater., 31, 1901111(2019).

    [179] W. Jung et al. Three-dimensional nanoprinting via charged aerosol jets. Nature, 592, 54-59(2021).

    [180] Y. Hou et al. Design and fabrication of three-dimensional chiral nanostructures based on stepwise glancing angle deposition technology. Langmuir, 29, 867-872(2013).

    [181] H. Lee et al. Three-dimensional assembly of nanoparticles from charged aerosols. Nano Lett., 11, 119-124(2011).

    [182] A. G. Mark et al. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater., 12, 802-807(2013).

    Jaekyung Kim, Junhwa Seong, Younghwan Yang, Seong-Won Moon, Trevon Badloe, Junsuk Rho. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 2022, 4(2): 024001
    Download Citation