• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Jiang Meiling, Zhang Mingsi, Li Xiangping, and Cao Yaoyu*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180649 Cite this Article
    Jiang Meiling, Zhang Mingsi, Li Xiangping, Cao Yaoyu. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 2010, 21(7): 28–33.

    [2] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 1991, 16(22):1780.

    [3] Day D, Gu M, Smallridge A. Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer[J]. Optics Letters, 1999, 24(14): 948–950.

    [4] Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics Letters, 1998, 23(10): 756–758.

    [5] Day D, Gu M. Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer[J]. Applied Optics, 1998, 37(26): 6299–6304.

    [6] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510–2512.

    [7] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007(1): 41–48.

    [8] Chen J B, Wang Y, Jia B H, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239–245.

    [9] Chow E, Lin S Y, Johnson S G, et al. Three-dimensional control of light in a two-dimensional photonic crystal slab[J]. Nature, 2000, 407(6807): 983–986.

    [10] Almeida V R, Barrios C A, Panepucci R R, et al. All-optical control of light on a silicon chip[J]. Nature, 2004, 431(7012): 1081–1084.

    [11] Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nature Photonics, 2007, 1(8): 449–458.

    [12] Li J, Jia B, Zhou G, et al. Spectral redistribution in spontaneous emission from quantum‐dot‐infiltrated 3D woodpile photonic crystals for telecommunications[J]. Advanced Materials, 2010, 19(20): 3276–3280.

    [13] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2015, 3(3): 144–147.

    [14] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2010, 3(10): 793–795.

    [15] Gu M, Cao Y Y, Castelletto S, et al. Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope[J]. Optics Express, 2013, 21(15): 17639–17646.

    [16] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical litho graphy[J]. Advanced Materials, 2010, 22(32): 3578–3582.

    [17] Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910–913.

    [18] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 1989, 245(4920): 843–845.

    [19] Betzig E, Trautman J K, Wolfe R, et al. Near–field magneto‐optics and high density data storage[J]. Applied Physics Letters, 1992, 61(2): 142–144.

    [20] Terris B D, Mamin H J, Rugar D, et al. Near–field optical data storage using a solid immersion lens[J]. Applied Physics Letters, 1994, 65(4): 388–390.

    [21] Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film[J]. Applied Physics Letters, 1998, 73(15): 2078–2080.

    [22] Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204–208.

    [23] Toriumi A, Kawata S, Gu M. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage[J]. Optics Letters, 1998, 23(24): 1924–1926.

    [24] Hosaka S, Shintani T, Miyamoto M, et al. Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode[J]. Japanese Journal of Applied Physics, 1996, 35(1B): 443–447.

    [25] Huang D R, Chao Z W, Wu G Z, et al. Near-field recording head with simple tracking design[J]. Japanese Journal of Applied Physics, 1999, 38(3B): 1774–1776.

    [26] Fuji H, Tominaga J, Men L Q, et al. A near-field recording and readout technology using a metallic probe in an optical disk[J]. Japanese Journal of Applied Physics, 2000, 39(2B): 980–981.

    [27] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567–570.

    [28] Boyd R W. Nonlinear optics-handbook of laser technology and applications[M]. Philadelphia: Taylor & Francis, 2003: 161.

    [29] Pudavar H E, Joshi M P, Prasad P N, et al. High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout[J]. Applied Physics Letters, 1999, 74(9): 1338–1340.

    [30] Zhou Y J, Tang H H, Zhuang W H, et al. Three-dimensional optical data storage in a novel photochromic material with two-photon writing and one-photon readout[J]. Optical Engineering, 2005, 44(3): 035202.

    [31] Cai J W, Huang W H. Three-dimensional information storage of polymer doped with nano-silver[J]. Microwave and Optical Technology Letters, 2015, 57(11): 2662–2665.

    [32] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780–782.

    [33] Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133–1145.

    [34] Scott T F, Kowalski B A, Sullivan A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913–917.

    [35] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

    [36] Wollhofen R, Buchegger B, Eder C, et al. Functional photoresists for sub-diffraction stimulated emission depletion lithography[J]. Optical Materials Express, 2017, 7(7): 2538–2559.

    [37] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

    [38] Li X, Pan S, Xing L W. Development of ultra-high density optical storage technology[J]. Journal of Chinese Electron Microscopy Society, 2007, 26(1): 78–83.

    [39] Partovi A, Peale D, Wuttig M, et al. High-power laser light source for near-field optics and its application to high-density optical data storage[J]. Applied Physics Letters, 1999, 75(11): 1515–1517.

    [40] Gorecki C, Khalfallah S, Kawakatsu H, et al. New SNOM sensor using optical feedback in a VCSEL-based compound-cavity[J]. Sensors and Actuators A: Physical, 2001, 87(3): 113–123.

    [41] Sharma P, Zhang Q, Sando D, et al. Nonvolatile ferroelectric domain wall memory[J]. Science Advances, 2017, 3(6): e1700512.

    [42] Terris B D, Mamin H J, Rugar D. Near‐field optical data storage[J]. Applied Physics Letters, 1996, 68(2): 141–143.

    [43] Shinoda M, Saito K, Kondo T, et al. High-density near-field readout using a diamond solid immersion lens[J]. Japanese Journal of Applied Physics, 2006, 45(2B): 1311–1313.

    [44] Fan W, Yan B, Wang Z D, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2016, 2(8): e1600901.

    [45] Nakai K, Ohmaki M, Takeshita N, et al. Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material InSb[J]. Japanese Journal of Applied Physics, 2010, 49(8S2): 08KE01.

    [46] Tominaga J, Kim J, Fuji H, et al. Super-resolution near-field structure and signal enhancement by surface plasmons[J]. Japanese Journal of Applied Physics, 2001, 40(3B): 1831–1834.

    [47] Fu Y H, Ho F H, Hsu W C, et al. Nonlinear optical properties of the Au-SiO2 nanocomposite superresolution near-field thin film[J]. Japanese Journal of Applied Physics, 2004, 43(7B): 5020–5023.

    [48] Zhao S L, Geng Y Y, Shi H R. Study on super-resolution readout performance of Si-Doped Ag film[J]. Acta Optica Sinica, 2012, 32(6): 297–302.

    [49] Zhang K, Geng Y Y, Wang Y, et al. Progress of super-resolution near-field structure and its application in optical data storage[J]. Frontiers of Optoelectronics, 2014, 7(4): 475–485.

    [50] Qin F, Li X P, Hong M H. From super-oscillatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757–771.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Jiang Meiling, Zhang Mingsi, Li Xiangping, Cao Yaoyu. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation