• Advanced Photonics
  • Vol. 5, Issue 1, 016005 (2023)
Valeria Cimini1, Mauro Valeri1, Emanuele Polino1, Simone Piacentini2, Francesco Ceccarelli2, Giacomo Corrielli2, Nicolò Spagnolo1, Roberto Osellame2, and Fabio Sciarrino1、*
Author Affiliations
  • 1Sapienza Università di Roma, Dipartimento di Fisica, Roma, Italy
  • 2Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Milano, Italy
  • show less
    DOI: 10.1117/1.AP.5.1.016005 Cite this Article Set citation alerts
    Valeria Cimini, Mauro Valeri, Emanuele Polino, Simone Piacentini, Francesco Ceccarelli, Giacomo Corrielli, Nicolò Spagnolo, Roberto Osellame, Fabio Sciarrino. Deep reinforcement learning for quantum multiparameter estimation[J]. Advanced Photonics, 2023, 5(1): 016005 Copy Citation Text show less
    References

    [1] V. Giovannetti, S. Lloyd, L. Maccone. Advances in quantum metrology. Nat. Photonics, 5, 222-229(2011).

    [2] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [3] S. Pirandola et al. Advances in photonic quantum sensing. Nat. Photonics, 12, 724-733(2018).

    [4] G. Brida, M. Genovese, I. Ruo Berchera. Experimental realization of sub-shot-noise quantum imaging. Nat. Photonics, 4, 227-230(2010).

    [5] M. A. Taylor et al. Biological measurement beyond the quantum limit. Nat. Photonics, 7, 229-233(2013).

    [6] R. Schnabel et al. Quantum metrology for gravitational wave astronomy. Nat. Commun., 1, 121(2010).

    [7] J. Abadie et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys., 7, 962(2011).

    [8] E. Polino et al. Photonic quantum metrology. AVS Quantum Sci., 2, 024703(2020).

    [9] M. Barbieri. Optical quantum metrology. PRX Quantum, 3, 010202(2022).

    [10] H. Yuan, C.-H. F. Fung. Optimal feedback scheme and universal time scaling for Hamiltonian parameter estimation. Phys. Rev. Lett., 115, 110401(2015).

    [11] J. Liu, H. Yuan. Control-enhanced multiparameter quantum estimation. Phys. Rev. A, 96, 042114(2017).

    [12] A. Shlosberg et al. Adaptive estimation of quantum observables(2021).

    [13] G. E. Box, G. C. Tiao. Bayesian Inference in Statistical Analysis(2011).

    [14] C. W. Helstrom. Quantum Detection and Estimation Theory(1976).

    [15] Y. Li et al. Frequentist and Bayesian quantum phase estimation. Entropy, 20, 628(2019).

    [16] M. Valeri et al. Experimental adaptive Bayesian estimation of multiple phases with limited data. NPJ Quantum Inf., 6, 92(2020).

    [17] M. Valeri et al. Experimental multiparameter quantum metrology in adaptive regime(2022).

    [18] S. Nolan, A. Smerzi, L. Pezzè. A machine learning approach to Bayesian parameter estimation. NPJ Quantum Inf., 7, 169(2021).

    [19] O. Varnavski et al. Quantum light-enhanced two-photon imaging of breast cancer cells. J. Phys. Chem. Lett., 13, 2772-2781(2022).

    [20] F. Wolfgramm et al. Entanglement-enhanced probing of a delicate material system. Nat. Photonics, 7, 28-32(2013).

    [21] R. Tenne et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photonics, 13, 116-122(2019).

    [22] A. Crespi et al. Measuring protein concentration with entangled photons. Appl. Phys. Lett., 100, 233704(2012).

    [23] E. Pelucchi et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys., 4, 194-208(2022).

    [24] G. Carleo et al. Machine learning and the physical sciences. Rev. Mod. Phys., 91, 045002(2019).

    [25] F. Vernuccio et al. Artificial intelligence in classical and quantum photonics. Laser Photonics Rev., 16, 2100399(2022).

    [26] V. Gebhart et al. Learning quantum systems(2022).

    [27] A. Dawid et al. Modern applications of machine learning in quantum sciences(2022).

    [28] G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 355, 602-606(2017).

    [29] G. Torlai et al. Neural-network quantum state tomography. Nat. Phys., 14, 447-450(2018).

    [30] A. A. Melnikov et al. Active learning machine learns to create new quantum experiments. Proc. Natl. Acad. Sci. U. S. A., 115, 1221-1226(2018).

    [31] V. Dunjko, H. J. Briegel. Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys., 81, 074001(2018).

    [32] M. Krenn et al. Automated search for new quantum experiments. Phys. Rev. Lett., 116, 090405(2016).

    [33] M. Krenn, M. Erhard, A. Zeilinger. Computer-inspired quantum experiments. Nat. Rev. Phys., 2, 649-661(2020).

    [34] M. Krenn et al. Conceptual understanding through efficient automated design of quantum optical experiments. Phys. Rev. X, 11, 031044(2021).

    [35] R. Iten et al. Discovering physical concepts with neural networks. Phys. Rev. Lett., 124, 010508(2020).

    [36] R. Roscher et al. Explainable machine learning for scientific insights and discoveries. IEEE Access, 8, 42200-42216(2020).

    [37] V. Cimini et al. Calibration of quantum sensors by neural networks. Phys. Rev. Lett., 123, 230502(2019).

    [38] V. Cimini et al. Calibration of multiparameter sensors via machine learning at the single-photon level. Phys. Rev. Appl., 15, 044003(2021).

    [39] S. P. Nolan, L. Pezzè, A. Smerzi. Frequentist parameter estimation with supervised learning. AVS Quantum Sci., 3, 034401(2021).

    [40] A. A. Gentile et al. Learning models of quantum systems from experiments. Nat. Phys., 17, 837-843(2021).

    [41] E. Alpaydin. Introduction to Machine Learning(2020).

    [42] R. S. Sutton, A. G. Barto. Reinforcement Learning: An Introduction(2018).

    [43] D. Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature, 529, 484-489(2016).

    [44] V. François-Lavet et al. An introduction to deep reinforcement learning. Found. Trends® Mach. Learn., 11, 219-354(2018).

    [45] M. Bukov et al. Reinforcement learning in different phases of quantum control. Phys. Rev. X, 8, 031086(2018).

    [46] T. Fösel et al. Reinforcement learning with neural networks for quantum feedback. Phys. Rev. X, 8, 031084(2018).

    [47] M. Y. Niu et al. Universal quantum control through deep reinforcement learning. NPJ Quantum Inf., 5, 33(2019).

    [48] Y. Baumet al., et?al.. Experimental deep reinforcement learning for error-robust gate-set design on a superconducting quantum computer. PRX Quantum, 2, 040324(2021).

    [49] Z. An, D. Zhou. Deep reinforcement learning for quantum gate control. Europhys. Lett., 126, 60002(2019).

    [50] H. Xu et al. Generalizable control for quantum parameter estimation through reinforcement learning. NPJ Quantum Inf., 5, 82(2019).

    [51] J. Schuff, L. J. Fiderer, D. Braun. Improving the dynamics of quantum sensors with reinforcement learning. New J. Phys., 22, 035001(2020).

    [52] T. Xiao, J. Fan, G. Zeng. Parameter estimation in quantum sensing based on deep reinforcement learning. NPJ Quantum Inf., 8, 2(2022).

    [53] A. Fallani et al. Learning feedback control strategies for quantum metrology. PRX Quantum, 3, 020310(2022).

    [54] S. Borah et al. Measurement-based feedback quantum control with deep reinforcement learning for a double-well nonlinear potential. Phys. Rev. Lett., 127, 190403(2021).

    [55] V. Sivak et al. Model-free quantum control with reinforcement learning. Phys. Rev. X, 12, 011059(2022).

    [56] L. J. Fiderer, J. Schuff, D. Braun. Neural-network heuristics for adaptive Bayesian quantum estimation. PRX Quantum, 2, 020303(2021).

    [57] A. Hentschel, B. C. Sanders. Machine learning for precise quantum measurement. Phys. Rev. Lett., 104, 063603(2009).

    [58] A. Hentschel, B. C. Sanders. Efficient algorithm for optimizing adaptive quantum metrology processes. Phys. Rev. Lett., 107, 233601(2011).

    [59] A. A. Berni et al. Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nat. Photonics, 9, 577-581(2015).

    [60] C. Granade et al. QInfer: statistical inference software for quantum applications. Quantum, 1, 5(2017).

    [61] C. E. Granade et al. Robust online Hamiltonian learning. New J. Phys., 14, 103013(2012).

    [62] S. E. D’Aurelio et al. Experimental investigation of Bayesian bounds in multiparameter estimation. Quantum Sci. Technol., 7, 025011(2022).

    [63] R. Osellame, G. Cerullo, R. Ramponi. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, 123(2012).

    [64] H. M. Wiseman. Adaptive phase measurements of optical modes: going beyond the marginal q distribution. Phys. Rev. Lett., 75, 4587-4590(1995).

    [65] M. G. Paris. Quantum estimation for quantum technology. Int. J. Quantum Inf., 7, 125-137(2009).

    [66] N. Wiebe, C. E. Granade. Efficient Bayesian phase estimation. Phys. Rev. Lett., 117, 010503(2016).

    [67] G. Corrielli, A. Crespi, R. Osellame. Femtosecond laser micromachining for integrated quantum photonics. Nanophotonics, 10, 3789-3812(2021).

    [68] T. Meany et al. Laser written circuits for quantum photonics. Laser Photonics Rev., 9, 363-384(2015).

    [69] T. Meany et al. Non-classical interference in integrated 3D multiports. Opt. Express, 20, 26895-26905(2012).

    [70] F. Flamini et al. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl., 4, e354(2015).

    [71] F. Ceccarelli et al. Low power reconfigurability and reduced crosstalk in integrated photonic circuits fabricated by femtosecond laser micromachining. Laser Photonics Rev., 14, 2000024(2020).

    [72] D. P. Kingma, J. Ba. Adam: a method for stochastic optimization(2014).

    [73] A. Hill et al. Stable baselines(2018).

    Valeria Cimini, Mauro Valeri, Emanuele Polino, Simone Piacentini, Francesco Ceccarelli, Giacomo Corrielli, Nicolò Spagnolo, Roberto Osellame, Fabio Sciarrino. Deep reinforcement learning for quantum multiparameter estimation[J]. Advanced Photonics, 2023, 5(1): 016005
    Download Citation