• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071605 (2020)
Zhigang Zhao1、2、3、*, Zhenhua Cong1、2、3, and Zhaojun Liu1、2、3、**
Author Affiliations
  • 1School of Information Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
  • 2Shandong Provincial Key Laboratory of Laser Technology and Application, Qingdao, Shandong, 266237, China
  • 3Ministry of Education Key Laboratory of Laser and Infrared System Integration Technology, Shandong University, Qingdao, Shandong, 266237, China
  • show less
    DOI: 10.3788/LOP57.071605 Cite this Article Set citation alerts
    Zhigang Zhao, Zhenhua Cong, Zhaojun Liu. Review on Ultrashort Pulse Laser Amplifiers Based on Bulk Yb-Doped Gain Media[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071605 Copy Citation Text show less
    References

    [1] Xie X Z, Zhou C X, Wei X et al. Laser machining of transparent brittle materials: from machining strategies to applications[J]. Opto-Electronic Advances, 2, 180017(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1903260000368D0GcJ

    [2] Dumitru G, Romano V, Weber H P et al. Femtosecond ablation of ultrahard materials[J]. Applied Physics A: Materials Science & Processing, 74, 729-739(2002).

    [3] Shin H, Kim D. Cutting thin glass by femtosecond laser ablation[J]. Optics & Laser Technology, 102, 1-11(2018).

    [4] Xie Q, Li X W, Jiang L et al. High-aspect-ratio, high-quality microdrilling by electron density control using a femtosecond laser Bessel beam[J]. Applied Physics A, 122, 136(2016).

    [5] Huang H, Yang L M, Bai S et al. Femtosecond fiber laser welding of dissimilar metals[J]. Applied Optics, 53, 6569-6578(2014).

    [6] Lutey A H A, Gemini L, Romoli L et al. Towards laser-textured antibacterial surfaces[J]. Scientific Reports, 8, 10112(2018).

    [7] Vorobyev A Y, Guo C. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews, 7, 385-407(2013).

    [8] Ozawa A, Zhao Z G, Kuwata-Gonokami M et al. High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation[J]. Optics Express, 23, 15107-15118(2015).

    [9] Hentschel M, Kienberger R, Spielmann C et al. Attosecond metrology[J]. Nature, 414, 509-513(2001).

    [10] Gohle C, Udem T, Herrmann M et al. A frequency comb in the extreme ultraviolet[J]. Nature, 436, 234(2005).

    [11] Miao J, Ishikawa T, Robinson I K et al. Beyond crystallography: Diffractive imaging using coherent X-ray light sources[J]. Science, 348, 530-535(2015).

    [12] Lee J, Han S, Lee K et al. Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength[J]. Measurement Science and Technology, 24, 045201(2013).

    [13] Müller M, Klenke A, Steinkopff A et al. 3.5 kW coherently combined ultrafast fiber laser[J]. Optics Letters, 43, 6037-6040(2018).

    [14] Russbueldt P, Mans T, Weitenberg J et al. Compact diode-pumped 1.1 kW Yb∶YAG Innoslab femtosecond amplifier[J]. Optics Letters, 35, 4169-4171(2010).

    [15] Nubbemeyer T, Kaumanns M, Ueffing M et al. 1 kW, 200 mJ picosecond thin-disk laser system[J]. Optics Letters, 42, 1381-1384(2017).

    [16] Wang Y L, Wang Q. Research progress in single-crystal fiber amplifiers[J]. Laser & Optoelectronics Progress, 55, 100006(2018).

    [17] Wang T, Zhang J, Zhang N et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 56, 170611(2019).

    [18] Liu Z J, Gao X B, Cong Z H et al. Crystal fiber and crystal-derived fiber preparation and application: a review[J]. Acta Photonica Sinica, 48, 1148003(2019).

    [19] Zhu J F, Tian W L, Gao Z Y et al. Diode-pumped all-solid-state femtosecond Yb laser oscillators[J]. Chinese Journal of Lasers, 44, 0900001(2017).

    [20] Rodin A M, Zopelis E. Comparison of Yb∶YAG single crystal fiber with larger aperture CPA pumped at 940 nm and 969 nm. [C]∥ 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 1-5(2017).

    [21] MacKonis P, Rodin A M. Laser with 1.2 ps, 20 mJ pulses at 100 Hz based on CPA with a low doping level Yb∶YAG rods for seeding and pumping of OPCPA[J]. Optics Express, 28, 1261(2020).

    [22] Rodin A M, Mackonis P. 1 TW-class OPCPA pumped with fiber laser seeded two-cascaded Yb∶YAG rod amplifier-compressor. [C]∥ 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 1-2(2018).

    [23] Veselis L, Bartulevicius T, Madeikis K et al. Compact 20 W femtosecond laser system based on fiber laser seeder, Yb∶YAG rod amplifier and chirped volume Bragg grating compressor[J]. Optics Express, 26, 31873-31879(2018).

    [24] Veselis L, Bartulevicius T, Madeikis K et al. Generation of 40 W, 400 fs pulses at 1 MHz repetition rate from efficient, room temperature Yb∶YAG double-pass amplifier seeded by fiber CPA system. [C]∥Frontiers in Optics + Laser Science APS/DLS, Washington, DC. Washington, D. C.: OSA(2019).

    [25] Zhao Z G, Qu C, Igarashi H et al. Watt-level 193 nm source generation based on compact collinear cascaded sum frequency mixing configuration[J]. Optics Express, 26, 19435-19444(2018).

    [26] Kuznetsov I, Mukhin I, Palashov O et al. Thin-tapered-rod Yb∶YAG laser amplifier[J]. Optics Letters, 41, 5361-5364(2016).

    [27] Lee B, Chizhov S A, Sall E G et al. Laser amplification in Yb∶YAG thin rods of different geometries: simulation and experiment[J]. Journal of the Optical Society of America B, 35, 2594-2599(2018).

    [28] Yang J, Lee B, Kim J W et al. Femtosecond laser system based on thin rod Yb∶YAG active elements with an output power of 110 W[J]. Quantum Electronics, 49, 1168-1171(2019).

    [29] Li F, Yang Z, Lv Z et al. Hundred micro-joules level high power chirped pulse amplification of femtosecond laser based on single crystal fiber[J]. IEEE Photonics Journal, 9, 1-7(2017).

    [30] Li F, Yang Z, Lv Z et al. Direct amplification of high energy pulsed laserin fiber-single crystal fiber with high average power[J]. Crystals, 9, 216(2019).

    [31] Wang N N, Wang X L, Zhang T et al. 23.9 W, 985 fs chirped pulse amplification system based on Yb∶YAG rod amplifier[J]. IEEE Photonics Journal, 11, 1-7(2019).

    [32] Kim J W, Sall E, Lee B et al. 8 W 240 fs diode-pumped Yb∶Y2O3 ceramic thin-rod femtosecond amplifier[J]. Optics Express, 27, 31418-31424(2019).

    [33] Kuznetsov I, Mukhin I, Palashov O et al. Thin-rod Yb∶YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 43, 3941-3944(2018).

    [34] Zapata L E, Reichert F, Hemmer M et al. 250 W average power, 100 kHz repetition rate cryogenic Yb∶YAG amplifier for OPCPA pumping[J]. Optics Letters, 41, 492-495(2016).

    [35] Cankaya H, Demirbas U, Hua Y et al. 190-mJ cryogenically-cooled Yb∶YLF amplifier system at 1019.7 nm[J]. OSA Continuum, 2, 3547-3553(2019).

    [36] Sueda K, Kawato S, Kobayashi T. LD pumped Yb∶YAG regenerative amplifier for high average power short-pulse generation[J]. Laser Physics Letters, 5, 271-275(2008).

    [37] Matsubara S, Tanaka M, Takama M et al. A picosecond thin-rod Yb∶YAG regenerative laser amplifier with the high average power of 20 W[J]. Laser Physics Letters, 10, 055810(2013).

    [38] Liu H H, Nees J, Mourou G. Directly diode-pumped Yb∶KY(WO4)2 regenerative amplifiers[J]. Optics Letters, 27, 722-724(2002).

    [39] et alYb∶KGd(WO4)2 chirped-pulse regenerative amplifiers[J]. Optics Communications, 203, 315-321(2002).

         Liu H, Liu H H, Nees J, Nees J, Mourou G, Mourou G et al. Yb∶KGd(WO4)2 chirped-pulse regenerative amplifiers[J]. Optics Communications, 203, 315-321(2002).

    [40] Ogawa K, Akahane Y, Aoyama M et al. Multi-millijoule, diode-pumped, cryogenically-cooled Yb∶KY(WO4)2 chirped-pulse regenerative amplifier[J]. Optics Express, 15, 8598-8602(2007).

    [41] Calendron A L, Wentsch K S, Meier J et al. High power and high energy Yb∶KYW regenerative amplifier using a chirped volume Bragg grating. [C]∥Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, Baltimore, Maryland. Washington, D. C.: OSA(2009).

    [42] Kim G H, Yang J, Chizhov S A et al. High average-power ultrafast CPA Yb∶KYW laser system with dual-slab amplifier[J]. Optics Express, 20, 3434-3442(2012).

    [43] Kim G H, Yang J, Chizhov S A et al. A high brightness Q-switched oscillator and regenerative amplifier based on a dual-crystal Yb∶KGW laser[J]. Laser Physics Letters, 10, 125004(2013).

    [44] Calendron A L, Cankaya H, Kartner F X. High-energy kHz Yb∶KYW dual-crystal regenerative amplifier[J]. Optics Express, 22, 24752-24762(2014).

    [45] Ricaud S, Druon F, Papadopoulos D N et al. Short-pulse and high-repetition-rate diode-pumped Yb∶CaF2 regenerative amplifier[J]. Optics Letters, 35, 2415-2417(2010).

    [46] Joao C P, Pires H, Cardoso L et al. Dispersion compensation by two-stage stretching in a sub-400 fs, 1.2 mJ Yb∶CaF2 amplifier[J]. Optics Express, 22, 10097-10104(2014).

    [47] Caracciolo E, Memnitzer M, Guandalini A et al. High energy, multiwatt, femtosecond, diode-pumped Yb∶CaAlGdO4 and Yb∶CaF2 regenerative amplifiers[J]. Proceedings of SPIE, 9342, 93421F(2015).

    [48] Sevillano P, Camy P, Doualan J et al. 130 fs - multiwatt Yb∶CaF2 regenerative amplifier pumped by a fiber laser. [C]∥Lasers Congress 2016 (ASSL, LSC, LAC), Boston, Massachusetts. Washington, D. C.: OSA(2016).

    [49] Andriukaitis G, Kaksis E, Flory T et al. Cryogenically cooled 30-mJ Yb∶CaF2 regenerative amplifier. [C]∥Lasers Congress 2016 (ASSL, LSC, LAC), Boston, Massachusetts. Washington, D. C.: OSA(2016).

    [50] Kawanaka J, Yamakawa K, Nishioka H et al. 30-mJ, diode-pumped, chirped-pulse Yb∶YLF regenerative amplifier[J]. Optics Letters, 28, 2121-2123(2003).

    [51] Demirbas U, Cankaya H, Hua Y et al. 20-mJ, sub-ps pulses at up to 70 W average power from a cryogenic Yb∶YLF regenerative amplifier[J]. Optics Express, 28, 2466-2479(2020).

    [52] Caracciolo E, Kemnitzer M, Guandalini A et al. 28-W, 217 fs solid-state Yb∶CAlGdO4 regenerative amplifiers[J]. Optics Letters, 38, 4131-4133(2013).

    [53] Caracciolo E, Pirzio F, Kemnitzer M et al. 42 W femtosecond Yb∶Lu2O3 regenerative amplifier[J]. Optics Letters, 41, 3395-3398(2016).

    [54] Rudenkov A, Kisel V, Yasukevich A et al. Yb 3+∶CaYAlO4-based chirped pulse regenerative amplifier[J]. Optics Letters, 41, 2249-2252(2016).

    [55] Rudenkov A, Kisel V, Matrosov V et al. 200 kHz 55 W Yb 3+∶YVO4-based chirped-pulse regenerative amplifier[J]. Optics Letters, 40, 3352-3355(2015).

    [56] Rudenkov A, Kisel V, Yasukevich A et al. Yb 3+∶LuAlO3 crystal as a gain medium for efficient broadband chirped pulse regenerative amplification[J]. Optics Letters, 42, 2415-2418(2017).

    [57] Rudenkov A S, Kisel V E, Gorbachenya K N et al. Growth, spectroscopy and high power laser operation of Yb∶YAl3(BO3)4 crystal: Continuous-wave, mode-locking and chirped pulse regenerative amplification[J]. Optical Materials, 89, 261-267(2019).

    [58] Machinet G, Sevillano P, Guichard F et al. High-brightness fiber laser-pumped 68 fs-2.3 W Kerr-lens mode-locked Yb∶CaF2 oscillator[J]. Optics Letters, 38, 4008-4010(2013).

    [59] Li W S, Matniyaz T, Gafsi S et al. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978nm[J]. Optics Express, 27, 24972-24977(2019).

    [60] Sevillano P, Camy P, Doualan J L et al. High gain broadband Yb∶CaF2 booster amplifier pumped by a 976 nm high power fiber laser. [C]∥Advanced Solid State Lasers, Berlin. Washington, D. C.: OSA(2015).

    [61] Obronov I V, Demkin A S, Myasnikov D V. Solid-state Yb∶YAG amplifier pumped by a single-mode laser at 920 nm[J]. Quantum Electronics, 48, 212-214(2018).

    [62] Bibeau C, Beach R J, Mitchell S C et al. High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb∶YAG laser[J]. IEEE Journal of Quantum Electronics, 34, 2010-2019(1998).

    [63] Honea E C, Beach R J, Mitchell S C et al. High-power dual-rod Yb∶YAG laser[J]. Optics Letters, 25, 805-807(2000).

    [64] Bruesselbach H, Sumida D S. A 2.65-kW Yb∶YAG single-rod laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 11, 600-603(2005).

    Zhigang Zhao, Zhenhua Cong, Zhaojun Liu. Review on Ultrashort Pulse Laser Amplifiers Based on Bulk Yb-Doped Gain Media[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071605
    Download Citation