• Photonic Sensors
  • Vol. 2, Issue 4, 315 (2012)
Paulo RORIZ1、*, António RAMOS1, José L. SANTOS2, and José A. SIMOES1
Author Affiliations
  • 1Department of Mechanics, University of Aveiro, 3810-193 Aveiro, Portugal
  • 2Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4150-179, Porto, Portugal
  • show less
    DOI: 10.1007/s13320-012-0090-3 Cite this Article
    Paulo RORIZ, António RAMOS, José L. SANTOS, José A. SIMOES. Fiber Optic Intensity-Modulated Sensors: a Review in Biomechanics[J]. Photonic Sensors, 2012, 2(4): 315 Copy Citation Text show less
    References

    [1] A. Lees, J. Vanrenterghem, and D. D. Clercq, “Understanding how an arm swing enhances performance in the vertical jump,” Journal of Biomechanics, vol. 37, no. 12, pp. 1929-1940, 2004.

    [2] N. Sakai and S. Shimawaki, “Hand motion analysis during touch-typing using VICON system with finger force plate,” Journal of Biomechanics, vol. 39, sup. 1, pp. S166, 2006.

    [3] H. Liu, C. Holt, and S. Evans, “Accuracy and repeatability of an optical motion analysis system for measuring small deformations of biological tissues,” Journal of Biomechanics, vol. 40, no. 1, pp. 210-214, 2007.

    [4] M. Windolf, H., Germany, and M. Morlock, “Systematic accuracy and precision analysis of video motion capturing systems - exemplified on the Vicon-460 system,” Journal of Biomechanics, vol. 41, no. 12, pp. 2776-2780, 2008.

    [5] R. P. Betts, T. Duckworth, I. G. Austin, S. P. Crocker, and S. Moore, “Critical light reflection at a plastic/glass interface and its application to foot pressure measurements,” Journal of Medical Engineering and Technology, vol. 4, no. 3, pp. 136-142, 1980.

    [6] C. I. Franks, R. P. Betts, and T. Duckworth, “Microprocessor-based image processing system for dynamic foot pressure studies,” Medical and Biological Engineering and Computing, vol. 21, no. 5, pp. 566-572, 1983.

    [7] C. I. Franks and R. P. Betts, “Selection of transducer material for use with ‘optical’ foot pressure systems,” Journal of Biomedical Engineering, vol. 10, no. 4, pp. 365-367, 1988.

    [8] A. Gefen, “The in vivo elastic properties of the plantar fascia during the contact phase of walking,” Foot and Ankle International, vol. 24, no. 3, pp. 238-244, 2003.

    [9] J. E. Nelson, D. E. Treaster, and W. S. Marras, “Finger motion, wrist motion and tendon travel as a function of keyboard angles,” Clinical Biomechanics, vol. 15, no. 7, pp. 489-498, 2000.

    [10] D. L. Jindrich, A. D. Balakrishnan, and J. T. Dennerlein, “Finger joint impedance during tapping on a computer keyswitch,” Journal of Biomechanics, vol. 37, no. 10, pp. 1589-1596, 2004.

    [11] G. Spahn, H. Plettenberg, E. Kahl, Klinger, M. Hans, T. M. Kockley, and G. O. Hofmann, “Near-infrared (NIR) spectroscopy. a new method for arthroscopic evaluation of low grade degenerated cartilage lesions. results of a pilot study,” BMC Musculoskeletal Disorders, vol. 8, no. 1, pp. 47, 2007.

    [12] G. O. Hofmann, J. Marticke, R. Grossstück, M. Hoffmann, M. Lange, H. K. Plettenberg, et al., “Detection and evaluation of initial cartilage pathology in man: a comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain,” Pathophysiology, vol. 17, no. 1, pp. 1-8, 2010.

    [13] G. Spahn, H. M. Klinger, M. Baums, M. Hoffmann, H. Plettenberg, A. Kroker, et al., “Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study,” The American Journal of Sports Medicine, vol. 38, no. 12, pp. 2516-2521, 2010.

    [14] J. K. Marticke, A. Hosselbarth, K. L. Hoffmeier, I .Marintschev, S. Otto, M. Lange, H. K. Plettenberg, et al., “How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints,” Clinical Biomechanics, vol. 25, no. 4, pp. 332-340, 2010.

    [15] M. Thompson and E. T. Vandenberg, “In vivo probes: problems and perspectives,” Clinical Biochemistry, vol. 19, no. 5, pp. 255-261, 1986.

    [16] J. Peterson and G. Vurek, “Fiber-optic sensors for biomedical applications,” Science, vol. 224, no. 4645, pp. 123-127, 1984.

    [17] D. A. Jackson and J. D. C. Jones, “Fiber optic sensors,” Optica Acta: International Journal of Optics, vol. 33, no. 12, pp. 1469-1503, 1986.

    [18] E. Udd, Fiber optic sensors: an introduction for engineers and scientists. New York: John Wiley & Sons Inc., 1991, pp. 496.

    [19] E. Udd, “An overview of fiber-optic sensors,” Review of Scientific Instruments, vol. 66, no. 8, pp. 4015-4030, 1995.

    [20] H. H. Hopkins and N. S. Kapany, “A flexible fiberscope, using static scanning,” Nature, vol. 173, pp. 39-41, 1954.

    [21] F. T. S. Yu and Y. Shizhuo, Fiber optic sensors, New York: Marcel Dekker Inc., 2002, pp. 509.

    [22] M. L. Polanyi and R. M. Hehir, “New reflection oximeter,” Review of Scientific Instruments, vol. 31, no. 4, pp. 401-403, 1960.

    [23] M. L. Polanyi and R. M. Hehir, “In vivo oximeter with fast dynamic response,” Review of Scientific Instruments, vol. 33, no. 10, pp. 1050-1054, 1962.

    [24] P. F. Ware, M. L. Polanyi, R. M. Hehir, J. F. Stapleton, J. I. Sanders, and S. L. Kocot, “A new reflection oximeter,” The Journal of Thoracic and Cardiovascular Surgery, vol. 42, pp. 580-588, 1961.

    [25] L. C. Clark, R. Wolf, D. Grager, and Z. Taylor, “Continuous recording of blood oxygen tensions by polarography,” Journal of Applied Physiology, vol. 6, no. 3, pp. 189-193, 1953.

    [26] Y. Enson, W. A. Briscoe, M. L. Polanyi, and A. Cournand, “In vivo studies with an intravascular and intracardiac reflection oximeter,” Journal of Applied Physiology, vol. 17, no. 3, pp. 552-558, 1962.

    [27] Y. Enson, A. G. Jameson, and A. Cournan, “Intracardiac oximetry in congenital heart disease,” Circulation, vol. 29, no. 4, pp. 499-507, 1964.

    [28] W. J. Gamble, P. G. Hugenholtz, R. G. Monroe, M. Polanyi, and A. S. Nadas, “The use of fiberoptics in clinical cardiac catheterization: I. intracardiac oximetry,” Circulation, vol. 31, no. 3, pp. 328-343, 1965.

    [29] P. G. Hugenholtz, W. J. Gamble, R. G. Monroe, and M. Polanyi, “The use of fiberoptics in clinical cardiac catheterization: II. in vivo dye-dilution curves,” Circulation, vol. 31, no. 3, pp. 344-355, 1965.

    [30] P. L. Frommer, J. Ross, D. T. Mason, J. H. Gault, and E. Braunwald, “Clinical applications of an improved, rapidly responding fiberoptic catheter,” The American Journal of Cardiology, vol. 15, no. 6, pp. 672-679, 1965.

    [31] D. C. Harrison, N. S. Kapany, H. A. Miller, N. Silbertrust, W. L. Henry, and R. P. Drake, “Fiber optics for continuous in vivo monitoring of oxygen saturation,” American Heart Journal, vol. 71, no. 6, pp. 766-774, 1966.

    [32] B. McCarthy, W. B. Hood, and B. Lown, “Fiberoptic monitoring of cardiac output and hepatic dye clearance in dogs,” Journal of Applied Physiology, vol. 23, no. 5, pp. 641-645, 1967.

    [33] G. A. Mook, P. Osypka, R. E. Sturm, and E. H. Wood, “Fiber optic reflection photometry on blood,” Cardiovascular Research, vol. 2, no. 2, pp. 199-209, 1968.

    [34] P. G. Hugenholtz, H. R. Wagner, and R. C. Ellison, “Application of fiberoptic dye-dilution technic to the assessment of myocardial function. I. description of technic and results in 100 patients with congenital or acquired heart disease,” The American Journal of Cardiology, vol. 24, no. 1, pp. 79-94, 1969.

    [35] R. Singh, A. J. Ranieri, H. R. Vest, D. L. Bowers, and J. F. Dammann, “Simultaneous determinations of cardiac output by thermal dilution, fiberoptic and dye-dilution methods,” The American Journal of Cardiology, vol. 25, no. 5, pp. 579-587, 1970.

    [36] F. Clark, E. Schmidt, and R. DeLaCroix, “Fiber optic blood pressure catheter with frequency response from DC into the audio range,” in Proceedings of the Natiotnal Electronics Conference, McCormick Place, Chicago, Illinois, USA, Oct. 25-27, pp. 213-216, 1965.

    [37] A. Lekholm and L. H. Lindstrom, “Optoelectronic transducer for intravascular measurements of pressure variations,” Medical and Biological Engineering and Computing, vol. 7, no. 3, pp. 333-335, 1969.

    [38] A. Ramirez, W. B. Hood, M. Polanyi, R. Wagner, N. A. Yankopoulos, and W. H. Abelmann, “Registration of intravascular pressure and sound by a fiberoptic catheter,” Journal of Applied Physiology, vol. 26, no. 5, pp. 679-683, 1969.

    [39] L. H. Lindstrom, “Miniaturized pressure transducer intended for intravascular use,” IEEE Transactions on Biomedical Engineering, vol. 17, no. 3, pp. 207-219, 1970.

    [40] G. E. Burch and W. A. Sodeman, “The estimation of the subcutaneous tissue pressure by a direct method,” The Journal of Clinical Investigation, vol. 16, no. 6, pp. 845-850, 1937.

    [41] K. R. Kaufman, T. Waveringb, D. Morrowa, J. Davisc, and R. L. Lieberc, “Performance characteristics of a pressure microsensor,” Journal of Biomechanics, vol. 36, no.2, pp. 283-287, 2003.

    [42] E. K. Franke, “Miniature pressure gauge for the measurement of intravascular blood pressure,” US Patent 3215135, Nov. 12, 1965.

    [43] W. E. Frank, “Detection and measurement device having a small flexible fiber transmission line,” US Patent 3273447, Sept. 20, 1966.

    [44] E. G. Valliere, “Optical catheter means,” US Patent 3267932, Aug. 23, 1966.

    [45] S. Morikawa, “Fiberoptic catheter-tip pressure transducer,” Japanese Journal of Medical Electronics and Biological Engineering, vol. 10, no. 1, pp. 36-39, 1972.

    [46] K. Kobayashi, H. Okuyama, T. Kato, and T. Yasuda, “Fiberoptic catheter-tip micromanometer,” Japanese Journal of Medical Electronics and Biological Engineering, vol. 15, no. 7, pp. 465-472, 1977.

         K. Kobayashi, H. Okuyama, T. Kato, and T. Yasuda, “Fiberoptic catheter-tip micromanometer,” Japanese Journal of Medical Electronics and Biological Engineering, vol. 15, no. 7, pp. 465-472, 1977.

    [47] J. B. Taylor, B. Lown, and M. Polanyi, “In vivo monitoring with a fiber optic catheter,” The Journal of the American Medical Association (JAMA), vol. 221, no. 7, pp. 667-673, 1972.

         J. B. Taylor, B. Lown, and M. Polanyi, “In vivo monitoring with a fiber optic catheter,” The Journal of the American Medical Association (JAMA), vol. 221, no. 7, pp. 667-673, 1972.

    [48] H. Matsumoto, M. Saegusa, K. Saito, and K. Mizoi, “The development of a fiber optic catheter tip pressure transducer,” Journal of Medical Engineering and Technology, vol. 2, no. 5, pp. 239-242, 1978.

         H. Matsumoto, M. Saegusa, K. Saito, and K. Mizoi, “The development of a fiber optic catheter tip pressure transducer,” Journal of Medical Engineering and Technology, vol. 2, no. 5, pp. 239-242, 1978.

    [49] L. Tenerz, L. Smith, and B. Hok, “A fiberoptic silicon pressure microsensor for measurements in coronary arteries,” in IEEE International Conference Solid-State Sensor Actuator, San Francisco, California, USA, Jun. 24-27, pp. 1021-1023, 1991.

         L. Tenerz, L. Smith, and B. Hok, “A fiberoptic silicon pressure microsensor for measurements in coronary arteries,” in IEEE International Conference Solid-State Sensor Actuator, San Francisco, California, USA, Jun. 24-27, pp. 1021-1023, 1991.

    [50] O. Tohyama, M. Kohashi, K. Yamamoto, and H. Itoh, “A fiber-optic silicon pressure sensor for ultra-thin catheters,” Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp. 622-625, 1996.

         O. Tohyama, M. Kohashi, K. Yamamoto, and H. Itoh, “A fiber-optic silicon pressure sensor for ultra-thin catheters,” Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp. 622-625, 1996.

    [51] C. Strandman, L. Smith, L. Tenerz, and B. Hok, “A production process of silicon sensor elements for a fiber-optic pressure sensor,” Sensors and Actuators A: Physical, vol. 63, no. 1, pp. 69-74, 1997.

         C. Strandman, L. Smith, L. Tenerz, and B. Hok, “A production process of silicon sensor elements for a fiber-optic pressure sensor,” Sensors and Actuators A: Physical, vol. 63, no. 1, pp. 69-74, 1997.

    [52] O. Tohyama, M. Kohashi, M. Fukui, and H. Itoh, “A fiber-optic pressure microsensor for biomedical applications,” Sensors and Actuators A: Physical, vol. 66, no. 1-3, pp. 150-154, 1998.

         O. Tohyama, M. Kohashi, M. Fukui, and H. Itoh, “A fiber-optic pressure microsensor for biomedical applications,” Sensors and Actuators A: Physical, vol. 66, no. 1-3, pp. 150-154, 1998.

    [53] E. Kalvesten, L. Smith, L. Tenerz, and G. Stemme, “The first surface micromachined pressure sensor for cardiovascular pressure measurements,” in Proceedings - The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, MEMS 98, Heidelberg, Germany, Jan. 25-29, pp. 574-579, 1998.

         E. Kalvesten, L. Smith, L. Tenerz, and G. Stemme, “The first surface micromachined pressure sensor for cardiovascular pressure measurements,” in Proceedings - The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998, MEMS 98, Heidelberg, Germany, Jan. 25-29, pp. 574-579, 1998.

    [54] F. Epstein, A. Wald, and G. M. Hochwald, “Intracranial pressure during compressive head wrapping in treatment of neonatal hydrocephalus,” Pediatrics, vol. 54, no. 6, pp. 786-790, 1974.

         F. Epstein, A. Wald, and G. M. Hochwald, “Intracranial pressure during compressive head wrapping in treatment of neonatal hydrocephalus,” Pediatrics, vol. 54, no. 6, pp. 786-790, 1974.

    [55] A. Wald, K. Post, J. Ransohoff, W. Hass, and F. Epstein, “A new technique for monitoring epidural intracranial pressure,” Medical Instrumentation, vol. 11, no. 6, pp. 352-354, 1977.

         A. Wald, K. Post, J. Ransohoff, W. Hass, and F. Epstein, “A new technique for monitoring epidural intracranial pressure,” Medical Instrumentation, vol. 11, no. 6, pp. 352-354, 1977.

    [56] A. Wald, “Monitoring intracranial pressure,” Journal of Clinical Engineering, vol. 3, no. 4, pp. 383-388, 1978.

         A. Wald, “Monitoring intracranial pressure,” Journal of Clinical Engineering, vol. 3, no. 4, pp. 383-388, 1978.

    [57] D. Vidyasagar and T. N. K. Raju, “A simple noninvasive technique of measuring intracranial pressure in the newborn,” Pediatrics, vol. 59, no. 6, pp. 957-961, 1977.

         D. Vidyasagar and T. N. K. Raju, “A simple noninvasive technique of measuring intracranial pressure in the newborn,” Pediatrics, vol. 59, no. 6, pp. 957-961, 1977.

    [58] D. Vidyasagar, T. N. Raju, and J. Chiang , “Clinical significance of monitoring anterior fontanel pressure in sick neonates and infants,” Pediatrics, vol. 62, no. 6, pp. 996-999, 1978.

         D. Vidyasagar, T. N. Raju, and J. Chiang , “Clinical significance of monitoring anterior fontanel pressure in sick neonates and infants,” Pediatrics, vol. 62, no. 6, pp. 996-999, 1978.

    [59] P. R. Holbrook, “1132 noninvasive measurement of intracranial pressure: evaluation of a technique,” Pediatric Research, vol. 12, pp. 552, 1978.

         P. R. Holbrook, “1132 noninvasive measurement of intracranial pressure: evaluation of a technique,” Pediatric Research, vol. 12, pp. 552, 1978.

    [60] N. J. Coroneos, D. G. McDowall, R. M. Gibson, V. W. Pickerodt, and N. P. Keaney, “Measurement of extradural pressure and its relationship to other intracranial pressures: an experimental and clinical study,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 36, no. 4, pp. 514-522, 1973.

         N. J. Coroneos, D. G. McDowall, R. M. Gibson, V. W. Pickerodt, and N. P. Keaney, “Measurement of extradural pressure and its relationship to other intracranial pressures: an experimental and clinical study,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 36, no. 4, pp. 514-522, 1973.

    [61] INTEGRA. (2010, 10 Dec). Directions for use: OLM Intracranial pressure monitoring kit Model 110-4B. Available: http://integralife.com/products/PDFs/Camino/110-4B.pdf.

         INTEGRA. (2010, 10 Dec). Directions for use: OLM Intracranial pressure monitoring kit Model 110-4B. Available: http://integralife.com/products/PDFs/Camino/110-4B.pdf.

    [62] D. B. Keck, “Optoelectronics in Japan and the United States,” Japanese Technology Evaluation Center (JTEC), Baltimore, Maryland, USA, February, 1996.

         D. B. Keck, “Optoelectronics in Japan and the United States,” Japanese Technology Evaluation Center (JTEC), Baltimore, Maryland, USA, February, 1996.

    [63] A. G. Crenshaw, J. R. Styf, S. J. Mubarak, and A. R. Hargens, “A new transducer-tipped fiber optic catheter for measuring intramuscular pressures,” Journal of Orthopaedic Research, vol. 8, no. 3, pp. 464-468, 1990.

         A. G. Crenshaw, J. R. Styf, S. J. Mubarak, and A. R. Hargens, “A new transducer-tipped fiber optic catheter for measuring intramuscular pressures,” Journal of Orthopaedic Research, vol. 8, no. 3, pp. 464-468, 1990.

    [64] A. G. Crenshaw, J. R. Styf, and A. R. Hargens, “Intramuscular pressures during exercise: an evaluation of a fiber optic transducer-tipped catheter system,” European Journal of Applied Physiology, vol. 65, no. 2, pp. 178-182, 1992.

         A. G. Crenshaw, J. R. Styf, and A. R. Hargens, “Intramuscular pressures during exercise: an evaluation of a fiber optic transducer-tipped catheter system,” European Journal of Applied Physiology, vol. 65, no. 2, pp. 178-182, 1992.

    [65] M. Nakhostine, J. R. Styf, S. V. Leuven, A. R Hargens, and D. H. Gershuni, “Intramuscular pressure varies with depth: the tibialis anterior muscle studied in 12 volunteers,” Acta Orthopaedica, vol. 64, no. 3, pp. 377-381, 1993.

         M. Nakhostine, J. R. Styf, S. V. Leuven, A. R Hargens, and D. H. Gershuni, “Intramuscular pressure varies with depth: the tibialis anterior muscle studied in 12 volunteers,” Acta Orthopaedica, vol. 64, no. 3, pp. 377-381, 1993.

    [66] P. Peters, S. R. Baker, P. W. Leopold, N. A. Taub, and K. G. Burnand, “Compartment syndrome following prolonged pelvic surgery,” British Journal of Surgery, vol. 81, no. 8, pp. 1128-1131, 1994.

         P. Peters, S. R. Baker, P. W. Leopold, N. A. Taub, and K. G. Burnand, “Compartment syndrome following prolonged pelvic surgery,” British Journal of Surgery, vol. 81, no. 8, pp. 1128-1131, 1994.

    [67] K. R. Kaufman and D. H. Sutherland, “Dynamic intramuscular pressure measurement during gait,” Operative Techniques in Sports Medicine, vol. 3, no. 4, pp. 250-255, 1995.

         K. R. Kaufman and D. H. Sutherland, “Dynamic intramuscular pressure measurement during gait,” Operative Techniques in Sports Medicine, vol. 3, no. 4, pp. 250-255, 1995.

    [68] R. A. Pedowitz, D. H. Gershuni, A. G. Crenshaw, S. L. Petras, L. A. Danzig, and A. R. Hargens, “Intraarticular pressure during continuous passive motion of the human knee,” Journal of Orthopaedic Research, vol. 7, no. 4, pp. 530-537, 1989.

         R. A. Pedowitz, D. H. Gershuni, A. G. Crenshaw, S. L. Petras, L. A. Danzig, and A. R. Hargens, “Intraarticular pressure during continuous passive motion of the human knee,” Journal of Orthopaedic Research, vol. 7, no. 4, pp. 530-537, 1989.

    [69] W. Inokuchi, O. B. Sanderhoff, J. O. Sojbjerg, and O. Sneppen, “The relation between the position of the glenohumeral joint and the intraarticular pressure: an experimental study,” Journal of Shoulder and Elbow Surgery, vol. 6, no. 2, pp. 144-149, 1997.

         W. Inokuchi, O. B. Sanderhoff, J. O. Sojbjerg, and O. Sneppen, “The relation between the position of the glenohumeral joint and the intraarticular pressure: an experimental study,” Journal of Shoulder and Elbow Surgery, vol. 6, no. 2, pp. 144-149, 1997.

    [70] C. M. Sommerich, W. S. Marras, and M. Parnianpour, “A method for developing biomechanical profiles of hand-intensive tasks,” Clinical Biomechanics, vol. 13, no. 4-5, pp. 261-271, 1998.

         C. M. Sommerich, W. S. Marras, and M. Parnianpour, “A method for developing biomechanical profiles of hand-intensive tasks,” Clinical Biomechanics, vol. 13, no. 4-5, pp. 261-271, 1998.

    [71] K. Iba, T. Wada, M. Aoki, H. Tsuji, T. Oda, and T. Yamashita, “Intraoperative measurement of pressure adjacent to the ulnar nerve in patients with cubital tunnel syndrome,” Journal of Hand Surgery-American, vol. 31, no. 4, pp. 553-558, 2006.

         K. Iba, T. Wada, M. Aoki, H. Tsuji, T. Oda, and T. Yamashita, “Intraoperative measurement of pressure adjacent to the ulnar nerve in patients with cubital tunnel syndrome,” Journal of Hand Surgery-American, vol. 31, no. 4, pp. 553-558, 2006.

    [72] K. Iba, T. Wada, M. Aoki, H. Tsuji, T. Oda, Y. Ozasa, et al., “The relationship between the pressure adjacent to the ulnar nerve and the disease causing cubital tunnel syndrome,” Journal of Shoulder and Elbow Surgery, vol. 17, no. 4, pp. 585-588, 2008.

         K. Iba, T. Wada, M. Aoki, H. Tsuji, T. Oda, Y. Ozasa, et al., “The relationship between the pressure adjacent to the ulnar nerve and the disease causing cubital tunnel syndrome,” Journal of Shoulder and Elbow Surgery, vol. 17, no. 4, pp. 585-588, 2008.

    [73] R. K. Narayan, R. S. Bray, C. S. Robertson, L. Gokaslan, and R. G. Grossman, “Experience with a new fiberoptic device for intracranial pressure monitoring,” presented at the 55th Annual Meeting American Association Neurological Surgeons, Dallas, Texas, May 3-7, 1987.

         R. K. Narayan, R. S. Bray, C. S. Robertson, L. Gokaslan, and R. G. Grossman, “Experience with a new fiberoptic device for intracranial pressure monitoring,” presented at the 55th Annual Meeting American Association Neurological Surgeons, Dallas, Texas, May 3-7, 1987.

    [74] J. S. Crutchfield, R. K. Narayan, C. S. Robertson, and L. H. Michael, “Evaluation of a fiberoptic intracranial pressure monitor,” Journal of Neurosurgery, vol. 72, no. 3, pp. 482-487, 1990.

         J. S. Crutchfield, R. K. Narayan, C. S. Robertson, and L. H. Michael, “Evaluation of a fiberoptic intracranial pressure monitor,” Journal of Neurosurgery, vol. 72, no. 3, pp. 482-487, 1990.

    [75] G. Gambardella, D. d'Avella, and F. Tomasello, “Monitoring of brain tissue pressure with a fiberoptic device,” Neurosurgery, vol. 31, no. 3, pp. 918-922, 1992.

         G. Gambardella, D. d'Avella, and F. Tomasello, “Monitoring of brain tissue pressure with a fiberoptic device,” Neurosurgery, vol. 31, no. 3, pp. 918-922, 1992.

    [76] J. S. Yablon, H. J. Lantner, T. M. McCormack, S. Nair, E. Barker, and P. Black, “Clinical experience with a fiberoptic intracranial pressure monitor,” Journal of Clinical Monitoring and Computing, vol. 9, no. 3, pp. 171-175, 1993.

         J. S. Yablon, H. J. Lantner, T. M. McCormack, S. Nair, E. Barker, and P. Black, “Clinical experience with a fiberoptic intracranial pressure monitor,” Journal of Clinical Monitoring and Computing, vol. 9, no. 3, pp. 171-175, 1993.

    [77] M. Czosnyka, Z. Czosnyka, and J. Pickard, “Laboratory testing of three intracranial pressure microtransducers: technical report,” Neurosurgery, vol. 38, no. 1, pp. 219-224, 1996.

         M. Czosnyka, Z. Czosnyka, and J. Pickard, “Laboratory testing of three intracranial pressure microtransducers: technical report,” Neurosurgery, vol. 38, no. 1, pp. 219-224, 1996.

    [78] P. H. Raboel, J. Bartek, M. Andresen, B. M. Bellander, and B. Romner, “Intracranial pressure monitoring: invasive versus non-invasive methods: a review,” Critical Care Research and Practice, vol. 2012, Article ID 950393 (14 pages), 2012.

         P. H. Raboel, J. Bartek, M. Andresen, B. M. Bellander, and B. Romner, “Intracranial pressure monitoring: invasive versus non-invasive methods: a review,” Critical Care Research and Practice, vol. 2012, Article ID 950393 (14 pages), 2012.

    [79] P. Hollingsworth-Fridlund, H. Vos, and E. K. Daily, “Use of fiber-optic pressure transducer for intracranial pressure measurements: a preliminary report,” Heart and Lung, vol. 17, no. 2, pp. 111-120, 1988.

         P. Hollingsworth-Fridlund, H. Vos, and E. K. Daily, “Use of fiber-optic pressure transducer for intracranial pressure measurements: a preliminary report,” Heart and Lung, vol. 17, no. 2, pp. 111-120, 1988.

    [80] N. Bruder, P. N'Zoghe, N. Graziani, D. Pelissier, F. Grisoli, and G. Francois, “A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients,” Intensive Care Medicine, vol. 21, no. 10, pp. 850-852, 1995.

         N. Bruder, P. N'Zoghe, N. Graziani, D. Pelissier, F. Grisoli, and G. Francois, “A comparison of extradural and intraparenchymatous intracranial pressures in head injured patients,” Intensive Care Medicine, vol. 21, no. 10, pp. 850-852, 1995.

    [81] E. Münch, R. Weigel, P. Schmiedek, and L. Schürer, “The CAMINO intracranial pressure device in clinical practice: reliability, handling characteristics and complications,” Acta Neurochirurgica, vol. 140, no. 11, pp. 1113-1120, 1998.

         E. Münch, R. Weigel, P. Schmiedek, and L. Schürer, “The CAMINO intracranial pressure device in clinical practice: reliability, handling characteristics and complications,” Acta Neurochirurgica, vol. 140, no. 11, pp. 1113-1120, 1998.

    [82] R. Martinez-Manas, D. Santamarta, J. M. de Campos, and E. Ferrer, “Camino intracranial pressure monitor: prospective study of accuracy and complications,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 69, no. 1, pp. 82-86, 2000.

         R. Martinez-Manas, D. Santamarta, J. M. de Campos, and E. Ferrer, “Camino intracranial pressure monitor: prospective study of accuracy and complications,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 69, no. 1, pp. 82-86, 2000.

    [83] I. Piper, A. Barnes, D. Smith, and L. Dunn, “The Camino intracranial pressure sensor: is it optimal technology an internal audit with a review of current intracranial pressure monitoring technologies,” Neurosurgery, vol. 49, no. 5, pp. 1158-1165, 2001.

         I. Piper, A. Barnes, D. Smith, and L. Dunn, “The Camino intracranial pressure sensor: is it optimal technology an internal audit with a review of current intracranial pressure monitoring technologies,” Neurosurgery, vol. 49, no. 5, pp. 1158-1165, 2001.

    [84] R. Stendel, J. Heidenreich, A. Schilling, R. Akhavan-Sigari, R. Kurth, T. Picht, et al., “Clinical evaluation of a new intracranial pressure monitoring device,” Acta Neurochirurgica, vol. 145, no. 3, pp. 185-193, 2003.

         R. Stendel, J. Heidenreich, A. Schilling, R. Akhavan-Sigari, R. Kurth, T. Picht, et al., “Clinical evaluation of a new intracranial pressure monitoring device,” Acta Neurochirurgica, vol. 145, no. 3, pp. 185-193, 2003.

    [85] M. Gelabert-Gonzalez, V. Ginesta-Galan, R. Sernamito-García, A. G. Allut, J. Bandin-Diéguez, and R. M. Rumbo, “The Camino intracranial pressure device in clinical practice. assessment in a 1000 cases,”Acta Neurochirurgica, vol. 148, no. 4, pp. 435-441, 2006.

         M. Gelabert-Gonzalez, V. Ginesta-Galan, R. Sernamito-García, A. G. Allut, J. Bandin-Diéguez, and R. M. Rumbo, “The Camino intracranial pressure device in clinical practice. assessment in a 1000 cases,”Acta Neurochirurgica, vol. 148, no. 4, pp. 435-441, 2006.

    [86] M. Smith, “Monitoring intracranial pressure in traumatic brain injury,” Anesthesia and Analgesia, vol. 106, no. 1, pp. 240-248, 2008.

         M. Smith, “Monitoring intracranial pressure in traumatic brain injury,” Anesthesia and Analgesia, vol. 106, no. 1, pp. 240-248, 2008.

    [87] P. K. Eide, “Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space,” Medical Engineering and Physics, vol. 30, no. 1, pp. 34-40, 2008.

         P. K. Eide, “Comparison of simultaneous continuous intracranial pressure (ICP) signals from ICP sensors placed within the brain parenchyma and the epidural space,” Medical Engineering and Physics, vol. 30, no. 1, pp. 34-40, 2008.

    [88] A. Bekar, S. Dogan, F. Abas, B. Caner, G. Korfali, H. Kocaeli, et al., “Risk factors and complications of intracranial pressure monitoring with a fiberoptic device,” Journal of Clinical Neuroscience, vol. 16, no. 2, pp. 236-240, 2009.

         A. Bekar, S. Dogan, F. Abas, B. Caner, G. Korfali, H. Kocaeli, et al., “Risk factors and complications of intracranial pressure monitoring with a fiberoptic device,” Journal of Clinical Neuroscience, vol. 16, no. 2, pp. 236-240, 2009.

    [89] R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 10, pp. 974-981, 1991.

         R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, and M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 10, pp. 974-981, 1991.

    [90] K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” Journal of Micromechanics and Microengineering, vol. 15, no. 1, pp. 71-75, 2005.

         K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” Journal of Micromechanics and Microengineering, vol. 15, no. 1, pp. 71-75, 2005.

    [91] P. Polygerinos, T. Schaeffter, L. Seneviratne, and K. Althoefer, “A fiber-optic catheter-tip force sensor with MRI compatibility: a feasibility study,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Minneapolis, Minnesota, Sept. 3-6, pp. 1501-1504, 2009.

         P. Polygerinos, T. Schaeffter, L. Seneviratne, and K. Althoefer, “A fiber-optic catheter-tip force sensor with MRI compatibility: a feasibility study,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Minneapolis, Minnesota, Sept. 3-6, pp. 1501-1504, 2009.

    [92] P. Polygerinos, T. Schaeffter, L. Seneviratne, R. Razavi, and K. Althoefer, “Novel miniature MRI-compatible fiber-optic force sensor for cardiac catheterization procedures,” in IEEE International Conference on Robotics Automation (ICRA), Anchorage, Alaska, USA, May 3-7, pp. 2598-2603, 2010.

         P. Polygerinos, T. Schaeffter, L. Seneviratne, R. Razavi, and K. Althoefer, “Novel miniature MRI-compatible fiber-optic force sensor for cardiac catheterization procedures,” in IEEE International Conference on Robotics Automation (ICRA), Anchorage, Alaska, USA, May 3-7, pp. 2598-2603, 2010.

    [93] J. N. Fields, C. K. Asawa, O. G. Ramer, and M. K. Barnoski, “Fiber optic pressure sensor,” Journal of the Acoustical Society of America, vol. 67, no. 3, pp. 816-818, 1980.

         J. N. Fields, C. K. Asawa, O. G. Ramer, and M. K. Barnoski, “Fiber optic pressure sensor,” Journal of the Acoustical Society of America, vol. 67, no. 3, pp. 816-818, 1980.

    [94] H. F. Taylor, “Bending effects in optical fibers,” Journal of Lightwave Technology, vol. 2, no. 5, pp. 617-628, 1984.

         H. F. Taylor, “Bending effects in optical fibers,” Journal of Lightwave Technology, vol. 2, no. 5, pp. 617-628, 1984.

    [95] S. Silvestri and E. Schena, “Optical-fiber measurement systems for medical applications,” in Optoelectronics: Devices and Applications. P. Predeep, Ed. Rijeka, Croatia: InTech, pp. 205-224, 2011.

         S. Silvestri and E. Schena, “Optical-fiber measurement systems for medical applications,” in Optoelectronics: Devices and Applications. P. Predeep, Ed. Rijeka, Croatia: InTech, pp. 205-224, 2011.

    [96] H. K. Kopola, O. Mantyla, M. Makiniemi, K. Mahonen, and K. Virtanen, “Instrument for measuring human biting force,” in Proc. SPIE, vol. 2331, pp. 149-155, 1995.

         H. K. Kopola, O. Mantyla, M. Makiniemi, K. Mahonen, and K. Virtanen, “Instrument for measuring human biting force,” in Proc. SPIE, vol. 2331, pp. 149-155, 1995.

    [97] P. V. Komi, A. Belli, V. Huttunen, R. Bonnefoy, A. Geyssant, and J. R. Lacour, “Optic fiber as a transducer of tendomuscular forces,” European Journal of Applied Physiology and Occupational Physiology, vol. 72, no. 3, pp. 278-280, 1996.

         P. V. Komi, A. Belli, V. Huttunen, R. Bonnefoy, A. Geyssant, and J. R. Lacour, “Optic fiber as a transducer of tendomuscular forces,” European Journal of Applied Physiology and Occupational Physiology, vol. 72, no. 3, pp. 278-280, 1996.

    [98] A. N. Arndt, P. V. Komi, G. P. Brüggemann, and J. Lukkariniemi, “Individual muscle contributions to the in vivo Achilles tendon force,” Clinical Biomechanics, vol. 13, no. 7, pp. 532-541, 1998.

         A. N. Arndt, P. V. Komi, G. P. Brüggemann, and J. Lukkariniemi, “Individual muscle contributions to the in vivo Achilles tendon force,” Clinical Biomechanics, vol. 13, no. 7, pp. 532-541, 1998.

    [99] T. Finni, S. Ikegaw, V. Lepola, and Paavo Komi, “In vivo behavior of vastus lateralis muscle during dynamic performances,” European Journal of Sport Science, vol. 1, no. 1, pp. 1-13, 2001.

         T. Finni, S. Ikegaw, V. Lepola, and Paavo Komi, “In vivo behavior of vastus lateralis muscle during dynamic performances,” European Journal of Sport Science, vol. 1, no. 1, pp. 1-13, 2001.

    [100] M. Ishikawa, P. V. Komi, M. J. Grey, V. Lepola, and G. P. Bruggemann, “Muscle-tendon interaction and elastic energy usage in human walking,” Journal of Applied Physiology, vol. 99, no. 2, pp. 603-608, 2005.

         M. Ishikawa, P. V. Komi, M. J. Grey, V. Lepola, and G. P. Bruggemann, “Muscle-tendon interaction and elastic energy usage in human walking,” Journal of Applied Physiology, vol. 99, no. 2, pp. 603-608, 2005.

    [101] C. Nicol, P. V. Komi, A. Belli, V. Huttunen, and E. Partio, “Reflex contribution to Achilles tendon forces: in-vivo measurements with the optic fiber technique,” presented at ISB XVth Congress, Jivaskyla, Finland, 1995.

         C. Nicol, P. V. Komi, A. Belli, V. Huttunen, and E. Partio, “Reflex contribution to Achilles tendon forces: in-vivo measurements with the optic fiber technique,” presented at ISB XVth Congress, Jivaskyla, Finland, 1995.

    [102] T. Finni, P. V. Komi, and J. Lukkariniemi, “Achilles tendon loading during walking: application of a novel optic fiber technique,” European Journal of Applied Physiology, vol. 77, no. 3, pp. 289-291, 1998.

         T. Finni, P. V. Komi, and J. Lukkariniemi, “Achilles tendon loading during walking: application of a novel optic fiber technique,” European Journal of Applied Physiology, vol. 77, no. 3, pp. 289-291, 1998.

    [103] T. Finni, P. V. Komi, and V. Lepola, “In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump,” European Journal of Applied Physiology, vol. 83, no. 4-5, pp. 416-426, 2000.

         T. Finni, P. V. Komi, and V. Lepola, “In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump,” European Journal of Applied Physiology, vol. 83, no. 4-5, pp. 416-426, 2000.

    [104] A. Erdemir, S. J. Piazza, and N. A. Sharkey, “Influence of loading rate and cable migration on fiberoptic measurement of tendon force,” Journal of Biomechanics, vol. 35, no. 6, pp. 857-862, 2002.

         A. Erdemir, S. J. Piazza, and N. A. Sharkey, “Influence of loading rate and cable migration on fiberoptic measurement of tendon force,” Journal of Biomechanics, vol. 35, no. 6, pp. 857-862, 2002.

    [105] G. W. Hall, J. R. Crandall, D. V. Carmines, and J. E. Hale, “Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon,” Journal of Biomechanics, vol. 32, no. 2, pp. 203-207, 1999.

         G. W. Hall, J. R. Crandall, D. V. Carmines, and J. E. Hale, “Rate-independent characteristics of an arthroscopically implantable force probe in the human achilles tendon,” Journal of Biomechanics, vol. 32, no. 2, pp. 203-207, 1999.

    [106] A. Erdemir, A. J. Hamel, S. J. Piazza, and N. A. Sharkey, “Fiberoptic measurement of tendon forces is influenced by skin movement artifact,” Journal of Biomechanics, vol. 36, no. 3, pp. 449-455, 2003.

         A. Erdemir, A. J. Hamel, S. J. Piazza, and N. A. Sharkey, “Fiberoptic measurement of tendon forces is influenced by skin movement artifact,” Journal of Biomechanics, vol. 36, no. 3, pp. 449-455, 2003.

    [107] J. H. Müller, C. Scheffer, and A. Elvin, “In vivo detection of patellar tendon creep using a fiber-optic sensor,” International Journal of Medical Engineering and Informatics, vol. 1, no. 2, pp. 155-173, 2008.

         J. H. Müller, C. Scheffer, and A. Elvin, “In vivo detection of patellar tendon creep using a fiber-optic sensor,” International Journal of Medical Engineering and Informatics, vol. 1, no. 2, pp. 155-173, 2008.

    [108] B. C. Fleming and B. D. Beynnon, “In vivo measurement of ligament/tendon strains and forces: a review,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 318-328, 2004.

         B. C. Fleming and B. D. Beynnon, “In vivo measurement of ligament/tendon strains and forces: a review,” Annals of Biomedical Engineering, vol. 32, no. 3, pp. 318-328, 2004.

    [109] A. T. Augousti and A. Raza, “The development of a fiber-optic respiratory plethysmograph (FORP),” in Sensors VI: Technology, Systems and Applications Proceedings of the sixth conference on Sensors and their Applications, Manchester, UK, Sept. 12-15, pp. 401-406, 1993.

         A. T. Augousti and A. Raza, “The development of a fiber-optic respiratory plethysmograph (FORP),” in Sensors VI: Technology, Systems and Applications Proceedings of the sixth conference on Sensors and their Applications, Manchester, UK, Sept. 12-15, pp. 401-406, 1993.

    [110] A. T. Augousti, “A theoretical study of the robustness of the isovolume calibration method for a two-compartment model of breathing, based on an analysis of the connected cylinders model,” Physics in Medicine and Biology, vol. 42, no. 2, pp. 283-291, 1997.

         A. T. Augousti, “A theoretical study of the robustness of the isovolume calibration method for a two-compartment model of breathing, based on an analysis of the connected cylinders model,” Physics in Medicine and Biology, vol. 42, no. 2, pp. 283-291, 1997.

    [111] A. T. Augousti, A. Raza, and M. Graves, “Design and characterization of a fiber optic respiratory plethysmograph (FORP),” in Biomedical Sensing, Imaging, and Tracking Technologies I, San Jose, California, USA, Jan. 27, pp. 250-257, 1996.

         A. T. Augousti, A. Raza, and M. Graves, “Design and characterization of a fiber optic respiratory plethysmograph (FORP),” in Biomedical Sensing, Imaging, and Tracking Technologies I, San Jose, California, USA, Jan. 27, pp. 250-257, 1996.

    [112] A. T. Augousti, F. X. Maletras, and J. Mason, “Improved fiber optic respiratory monitoring using a figure-of-eight coil,” Physiological Measurement, vol. 26, no. 5, pp. 585-590, 2005.

         A. T. Augousti, F. X. Maletras, and J. Mason, “Improved fiber optic respiratory monitoring using a figure-of-eight coil,” Physiological Measurement, vol. 26, no. 5, pp. 585-590, 2005.

    [113] C. Davis, A. Mazzolini, and D. Murphy, “A new fiber optic sensor for respiratory monitoring,” Australasian Physical and Engineering Sciences in Medicine, vol. 20, no. 4, pp. 214-219, 1997.

         C. Davis, A. Mazzolini, and D. Murphy, “A new fiber optic sensor for respiratory monitoring,” Australasian Physical and Engineering Sciences in Medicine, vol. 20, no. 4, pp. 214-219, 1997.

    [114] C. Davis, A. Mazzolini, J. Mills, and P. Dargaville, “A new sensor for monitoring chest wall motion during high-frequency oscillatory ventilation,” Medical Engineering and Physics, vol. 21, no. 9, pp. 619-623, 1999.

         C. Davis, A. Mazzolini, J. Mills, and P. Dargaville, “A new sensor for monitoring chest wall motion during high-frequency oscillatory ventilation,” Medical Engineering and Physics, vol. 21, no. 9, pp. 619-623, 1999.

    [115] A. Babchenko, A. Babchenko, B. Khanokh, Y. Shomer, and M. Nitzan, “Fiber optic sensor for the measurement of respiratory chest circumference changes,” Journal of Biomedical Optics, vol. 4, no. 2, pp. 224-229, 1999.

         A. Babchenko, A. Babchenko, B. Khanokh, Y. Shomer, and M. Nitzan, “Fiber optic sensor for the measurement of respiratory chest circumference changes,” Journal of Biomedical Optics, vol. 4, no. 2, pp. 224-229, 1999.

    [116] D. J. Sturman and D. Zeltzer, “A survey of glove-based input,” IEEE Computer Graphics and Applications, vol. 14, no. 1, pp. 30-39, 1994.

         D. J. Sturman and D. Zeltzer, “A survey of glove-based input,” IEEE Computer Graphics and Applications, vol. 14, no. 1, pp. 30-39, 1994.

    [117] L. Simone and D. Kamper, “Design considerations for a wearable monitor to measure finger posture,” Journal of NeuroEngineering and Rehabilitation, vol. 2, no. 1, pp. 5, 2005.

         L. Simone and D. Kamper, “Design considerations for a wearable monitor to measure finger posture,” Journal of NeuroEngineering and Rehabilitation, vol. 2, no. 1, pp. 5, 2005.

    [118] O. Portillo-Rodriguez, C. A. Avizzano, E. Sotgiu, S. Pabon, A. Frisoli, J. Ortiz, et al., “A wireless bluetooth dataglove based on a novel goniometric sensors,” in the 16th IEEE International Symposium on Robot and Human interactive Communication, 2007, RO-MAN 2007, Jeju, Korea, Aug. 26-29, pp. 1185-1190, 2007.

         O. Portillo-Rodriguez, C. A. Avizzano, E. Sotgiu, S. Pabon, A. Frisoli, J. Ortiz, et al., “A wireless bluetooth dataglove based on a novel goniometric sensors,” in the 16th IEEE International Symposium on Robot and Human interactive Communication, 2007, RO-MAN 2007, Jeju, Korea, Aug. 26-29, pp. 1185-1190, 2007.

    [119] L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glove-based systems and their applications,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 4, pp. 461-482, 2008.

         L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glove-based systems and their applications,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 4, pp. 461-482, 2008.

    [120] T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gesture interface device,” SIGCHI Bulletin, vol. 18, no. 4, pp. 189-192, 1986.

         T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill, “A hand gesture interface device,” SIGCHI Bulletin, vol. 18, no. 4, pp. 189-192, 1986.

    [121] M. C. Zimmerman, “Optical flex sensor,” US Patent 4542291, Sept. 17, 1985.

         M. C. Zimmerman, “Optical flex sensor,” US Patent 4542291, Sept. 17, 1985.

    [122] S. Wise and G. William, “Evaluation of a fiber optic glove for semi-automated goniometric measurements,” Journal of Rehabilitation Research and Development, vol. 27, no. 4, pp. 411-424, 1990.

         S. Wise and G. William, “Evaluation of a fiber optic glove for semi-automated goniometric measurements,” Journal of Rehabilitation Research and Development, vol. 27, no. 4, pp. 411-424, 1990.

    [123] H. Grant and L. Chuen-Ki, “Simulation modeling with artificial reality technology (SMART): an integration of virtual reality and simulation modeling,” in Simulation Conference Proceedings, Washington, D.C., Dec. 13-16, vol. 1, pp. 437-441, 1998.

         H. Grant and L. Chuen-Ki, “Simulation modeling with artificial reality technology (SMART): an integration of virtual reality and simulation modeling,” in Simulation Conference Proceedings, Washington, D.C., Dec. 13-16, vol. 1, pp. 437-441, 1998.

    [124] M. Huber, B. Rabin, C. Docan, G. C. Burdea, M. AbdelBaky, and M. R. Golomb, “Feasibility of modified remotely monitored in-home gaming technology for improving hand function in adolescents with cerebral palsy,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 526-534, 2010.

         M. Huber, B. Rabin, C. Docan, G. C. Burdea, M. AbdelBaky, and M. R. Golomb, “Feasibility of modified remotely monitored in-home gaming technology for improving hand function in adolescents with cerebral palsy,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 2, pp. 526-534, 2010.

    [125] M. R. Golomb, B. C. McDonald, S. J. Warden, J. Yonkman, A. J. Saykin, B. Shirley, et al., “In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 1, pp. 1-8, 2010.

         M. R. Golomb, B. C. McDonald, S. J. Warden, J. Yonkman, A. J. Saykin, B. Shirley, et al., “In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy,” Archives of Physical Medicine and Rehabilitation, vol. 91, no. 1, pp. 1-8, 2010.

    [126] 5DT. (2011, 1 May). Price list. Available: http://www.5dt.com/pricelist.html.

         5DT. (2011, 1 May). Price list. Available: http://www.5dt.com/pricelist.html.

    [127] OFSETH. (2006, 15 Nov.). Optical fiber sensors embedded into technical textile for healthcare. Available: www.ofseth.org/.

         OFSETH. (2006, 15 Nov.). Optical fiber sensors embedded into technical textile for healthcare. Available: www.ofseth.org/.

    [128] J. De Jonckheere, M. Jeanne, A. Grillet, S. Weber, P. Chaud, R. Logier, et al., “OFSETH: optical fiber embedded into technical textile for healthcare, an efficient way to monitor patient under magnetic resonance imaging,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, Lyon, Aug. 22-26, vol. 2007, pp. 3950-3953, 2007.

         J. De Jonckheere, M. Jeanne, A. Grillet, S. Weber, P. Chaud, R. Logier, et al., “OFSETH: optical fiber embedded into technical textile for healthcare, an efficient way to monitor patient under magnetic resonance imaging,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, Lyon, Aug. 22-26, vol. 2007, pp. 3950-3953, 2007.

    [129] A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, et al., “Optical fiber sensors embedded into medical textiles for healthcare monitoring,” IEEE Sensors Journal, vol. 8, no. 7, pp. 1215-1222, 2008.

         A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, et al., “Optical fiber sensors embedded into medical textiles for healthcare monitoring,” IEEE Sensors Journal, vol. 8, no. 7, pp. 1215-1222, 2008.

    [130] J. De Jonckheere, F. Narbonneau, D. Kinet, J. Zinke, B. Paquet, A. Depre, et al., “Optical fiber sensors embedded into technical textile for a continuous monitoring of patients under Magnetic Resonance Imaging,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, vol. 2008, pp. 5266-5269, 2008.

         J. De Jonckheere, F. Narbonneau, D. Kinet, J. Zinke, B. Paquet, A. Depre, et al., “Optical fiber sensors embedded into technical textile for a continuous monitoring of patients under Magnetic Resonance Imaging,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, vol. 2008, pp. 5266-5269, 2008.

    [131] J. De Jonckheere, F. Narbonneau, D. Kinet, J. Witt, K. Krebber, B. Paquet, et al., “OFSETH: smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, Minneapolis, Sept. 3-6, pp. 1473-1476, 2009.

         J. De Jonckheere, F. Narbonneau, D. Kinet, J. Witt, K. Krebber, B. Paquet, et al., “OFSETH: smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, Minneapolis, Sept. 3-6, pp. 1473-1476, 2009.

    [132] J. De Jonckheere, M. Jeanne, F. Narbonneau, J. Witt, B. Paquet, D. Kinet, et al., “OFSETH: a breathing motions monitoring system for patients under MRI,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, Buenos Aires, Aug. 31 - Sept. 4, pp. 1016-1019, 2010.

         J. De Jonckheere, M. Jeanne, F. Narbonneau, J. Witt, B. Paquet, D. Kinet, et al., “OFSETH: a breathing motions monitoring system for patients under MRI,” in Conference Proceedings - IEEE Engineering in Medicine and Biology Society, Buenos Aires, Aug. 31 - Sept. 4, pp. 1016-1019, 2010.

    [133] J. De Jonckheere, F. Narbonneau, D. Kinet, J. Zinke, B. Paquet, A. Depre, et al., “Optical fiber sensors embedded into technical textile for a continuous monitoring of patients under magnetic resonance imaging,” in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, Vancouver, Aug. 20-25, pp. 5266-5269, 2008.

         J. De Jonckheere, F. Narbonneau, D. Kinet, J. Zinke, B. Paquet, A. Depre, et al., “Optical fiber sensors embedded into technical textile for a continuous monitoring of patients under magnetic resonance imaging,” in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, Vancouver, Aug. 20-25, pp. 5266-5269, 2008.

    [134] W. C. Wang, W. R. Ledoux, C. Y. Huang, C. S. Huang, G. K. Klute, and P. G.. Reinhall, “Development of a microfabricated optical bend loss sensor for distributive pressure measurement,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp. 614-625, 2008.

         W. C. Wang, W. R. Ledoux, C. Y. Huang, C. S. Huang, G. K. Klute, and P. G.. Reinhall, “Development of a microfabricated optical bend loss sensor for distributive pressure measurement,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp. 614-625, 2008.

    [135] W. C. Wang, W. R. Ledoux, B. J. Sangeorzan, P. G.. Reinhall, “A shear and plantar pressure sensor based on fiber-optic bend loss,” Journal of Rehabilitation Research and Development, vol. 42, no. 3, pp. 315-25, 2005.

         W. C. Wang, W. R. Ledoux, B. J. Sangeorzan, P. G.. Reinhall, “A shear and plantar pressure sensor based on fiber-optic bend loss,” Journal of Rehabilitation Research and Development, vol. 42, no. 3, pp. 315-25, 2005.

    [136] W. C. Wang, C. T. Ho, Y. R. Lian, and W. C. Chuang, “Transducing mechanical force by use of a diffraction grating sensor,” Applied Optics, vol. 45, no. 9, pp. 1893-1897, 2006.

         W. C. Wang, C. T. Ho, Y. R. Lian, and W. C. Chuang, “Transducing mechanical force by use of a diffraction grating sensor,” Applied Optics, vol. 45, no. 9, pp. 1893-1897, 2006.

    [137] W. C. Wang, C. Y. Huang, T. K. Chiang, and P. G. Reinhall, “Optical and mechanical characterization of microfabricated optical bend loss sensor for distributive pressure measurement,” in Health Monitoring Structural and Biological Systems 2007, San Diego, California, USA, Mar. 19-22, pp. 65321K-10, 2007.

         W. C. Wang, C. Y. Huang, T. K. Chiang, and P. G. Reinhall, “Optical and mechanical characterization of microfabricated optical bend loss sensor for distributive pressure measurement,” in Health Monitoring Structural and Biological Systems 2007, San Diego, California, USA, Mar. 19-22, pp. 65321K-10, 2007.

    [138] W. Soetanto, N. T. Nguyen, and W. C. Wang, “Fiber optic plantar pressure/shear sensor,” in Proc. SPIE, vol. 7984, pp. 79840Z-1-79840Z-7, 2011.

         W. Soetanto, N. T. Nguyen, and W. C. Wang, “Fiber optic plantar pressure/shear sensor,” in Proc. SPIE, vol. 7984, pp. 79840Z-1-79840Z-7, 2011.

    CLP Journals

    [1] Ekaterina V. LOGINOVA, Tatyana V. ZHIDKOVA, Mikhail A. PROSKURNIN, Vladimir P. ZHAROV. Rapid Multi-Wavelength Optical Assessment of Circulating Blood Volume Without a Priori Data[J]. Photonic Sensors, 2016, 6(1): 42

    Paulo RORIZ, António RAMOS, José L. SANTOS, José A. SIMOES. Fiber Optic Intensity-Modulated Sensors: a Review in Biomechanics[J]. Photonic Sensors, 2012, 2(4): 315
    Download Citation