• Laser & Optoelectronics Progress
  • Vol. 61, Issue 2, 0211028 (2024)
Chao Yan1, Siyi Hu2,*, and Bobo Gu1,**
Author Affiliations
  • 1Med -X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai200030, China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu , China
  • show less
    DOI: 10.3788/LOP232584 Cite this Article Set citation alerts
    Chao Yan, Siyi Hu, Bobo Gu. Advances in Microscopic Imaging with Metalenses: Design, Fabrication, and Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211028 Copy Citation Text show less
    References

    [1] Zheng X M, Wang L, Wang M T et al. Resolution improvement of structured illumination microscopy using non-diffraction-limited point-scanned fluorescence fringe[J]. Laser & Photonics Reviews, 17, 2200796(2023).

    [2] Chen X, Kandel M E, He S H et al. Artificial confocal microscopy for deep label-free imaging[J]. Nature Photonics, 17, 250-258(2023).

    [3] Yang X F, Zhang H, Liu Z X et al. Time-stretch chromatic confocal microscopy for multi-depth imaging[J]. Laser & Photonics Reviews, 17, 2300387(2023).

    [4] Han Q, Shi J P, Shi F H. Sidelobe suppression in structured light sheet fluorescence microscopy by the superposition of two light sheets[J]. Biomedical Optics Express, 14, 1178-1191(2023).

    [5] Liu G X, Ruan X T, Milkie D E et al. Characterization, comparison, and optimization of lattice light sheets[J]. Science Advances, 9, eade6623(2023).

    [6] Yu X H, Liu C, Bai C et al. Progress in light-sheet fluorescence microscopy and applications[J]. Laser & Optoelectronics Progress, 57, 100001(2020).

    [7] Fan Y, Sun J S, Chen Q et al. Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy[J]. Photonics Research, 7, 890-904(2019).

    [8] Soltau J, Osterhoff M, Salditt T. Coherent diffractive imaging with diffractive optics[J]. Physical Review Letters, 128, 223901(2022).

    [9] Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 38, 6994-7001(1999).

    [10] Li T, Chen C, Xiao X J et al. Revolutionary meta-imaging: from superlens to metalens[J]. Photonics Insights, 2, R01(2023).

    [11] Chen W T, Zhu A Y, Sanjeev V et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 13, 220-226(2018).

    [12] Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electronic Advances, 4, 200008(2021).

    [13] Zhang J, Dun X, Zhu J Y et al. Large numerical aperture metalens with high modulation transfer function[J]. ACS Photonics, 10, 1389-1396(2023).

    [14] Zhang S J, Chen X Y, Liu K et al. On-chip non-volatile reconfigurable THz varifocal metalens[J]. Laser & Photonics Reviews, 17, 2300482(2023).

    [15] Chen P, Fang B, Li J M et al. Flexible control of multi-focus with geometric phase encoded metalens based on the complex digital addition principle[J]. Optics and Lasers in Engineering, 161, 107332(2023).

    [16] Shen Z C, Zhao F, Jin C Q et al. Monocular metasurface camera for passive single-shot 4D imaging[J]. Nature Communications, 14, 1035(2023).

    [17] Zeng B W, Li C X, Fang B et al. Flexible tuning of multifocal holographic imaging based on electronically controlled metasurfaces[J]. Photonics Research, 12, 61-69(2023).

    [18] Javed I, Kim J S, Naveed M A et al. Broad-band polarization-insensitive metasurface holography with a single-phase map[J]. ACS Applied Materials & Interfaces, 14, 36019-36026(2022).

    [19] Hsieh P Y, Fang S L, Lin Y S et al. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection[J]. Nanophotonics, 11, 4687-4695(2022).

    [20] Chung H, Zhang F, Li H et al. Inverse design of high-NA metalens for maskless lithography[J]. Nanophotonics, 12, 2371-2381(2023).

    [21] Jin Z, Lin Y, Wang C M et al. Topologically optimized concentric-nanoring metalens with 1 mm diameter, 0.8 NA and 600 nm imaging resolution in the visible[J]. Optics Express, 31, 10489-10499(2023).

    [22] Yang F, Shalaginov M Y, Lin H I et al. Wide field-of-view metalens: a tutorial[J]. Advanced Photonics, 5, 033001(2023).

    [23] Hu Y Q, Jiang Y T, Zhang Y et al. Asymptotic dispersion engineering for ultra-broadband meta-optics[J]. Nature Communications, 14, 6649(2023).

    [24] Balli F, Sultan M A, Ozdemir A et al. An ultrabroadband 3D achromatic metalens[J]. Nanophotonics, 10, 1259-1264(2021).

    [25] Jing X L, Wang Y T, Huang L L. Metasurface-based three-dimensional imaging technique[J]. Laser & Optoelectronics Progress, 60, 0811003(2023).

    [26] Genevet P, Capasso F, Aieta F et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 4, 139-152(2017).

    [27] Zhao M X, Chen M K, Zhuang Z P et al. Phase characterisation of metalenses[J]. Light: Science & Applications, 10, 52(2021).

    [28] Liu W W, Ma D N, Li Z C et al. Aberration-corrected three-dimensional positioning with a single-shot metalens array[J]. Optica, 7, 1706-1713(2020).

    [29] Zhu A Y, Chen W T, Sisler J et al. Compact aberration-corrected spectrometers in the visible using dispersion-tailored metasurfaces[J]. Advanced Optical Materials, 7, 1801144(2019).

    [30] Zhao F, Li Z P, Li S et al. Terahertz metalens of hyper-dispersion[J]. Photonics Research, 10, 886-895(2022).

    [31] Shen Z X, Zhou S H, Li X N et al. Liquid crystal integrated metalens with tunable chromatic aberration[J]. Advanced Photonics, 2, 036002(2020).

    [32] Deng F S, Guo Z W, Ren M N et al. Bessel beam generated by the zero-index metalens[J]. Progress in Electromagnetics Research, 174, 89-106(2022).

    [33] Wang Y L, Min C J, Zhang Y Q et al. Drawing structured plasmonic field with on-chip metalens[J]. Nanophotonics, 11, 1969-1976(2022).

    [34] Wang R X, Han J, Liu J L et al. Multi-foci metalens for terahertz polarization detection[J]. Optics Letters, 45, 3506-3509(2020).

    [35] Kats M A, Yu N F, Genevet P et al. Effect of radiation damping on the spectral response of plasmonic components[J]. Optics Express, 19, 21748-21753(2011).

    [36] Yu N F, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011).

    [37] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012).

    [38] Yu Y F, Zhu A Y, Paniagua-Domínguez R et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths[J]. Laser & Photonics Reviews, 9, 412-418(2015).

    [39] Li J, Wu T S, Xu W B et al. Mechanisms of 2π phase control in dielectric metasurface and transmission enhancement effect[J]. Optics Express, 27, 23186-23196(2019).

    [40] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 44, 247-262(1956).

    [41] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984).

    [42] Chen C, Gao S L, Song W G et al. Metasurfaces with planar chiral meta-atoms for spin light manipulation[J]. Nano Letters, 21, 1815-1821(2021).

    [43] Moreno-Peñarrubia A, Teniente J, Kuznetsov S et al. Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter waves[J]. Applied Physics Letters, 118, 221105(2021).

    [44] Xu H X, Wang G M, Cai T et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection[J]. Optics Express, 24, 27836-27848(2016).

    [45] Yuan Y, Yan Z L, Zhang P F et al. A broadband achromatic dielectric planar metalens in mid-IR range[J]. Photonic Sensors, 13, 230126(2022).

    [46] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [47] Khorasaninejad M, Chen W T, Devlin R et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [48] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [49] Ogawa C, Nakamura S, Aso T et al. Rotational varifocal moiré metalens made of single-crystal silicon meta-atoms for visible wavelengths[J]. Nanophotonics, 11, 1941-1948(2022).

    [50] Chen C, Song W G, Chen J W et al. Spectral tomographic imaging with aplanatic metalens[J]. Light: Science & Applications, 8, 99(2019).

    [51] Wang Y J, Chen Q M, Yang W H et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nature Communications, 12, 5560(2021).

    [52] Zhu Y C, Liu S Y, Chang Y et al. Broadband polarization-insensitive metalens with excellent achromaticity and high efficiency for the entire visible spectrum[J]. Applied Physics Letters, 122, 201702(2023).

    [53] Khorasaninejad M, Zhu A Y, Roques-Carmes C et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 16, 7229-7234(2016).

    [54] Liang Y T, Zhou J X, Yin D F et al. Monolithically integrated electro-optic modulator fabricated on lithium niobate on insulator by photolithography assisted chemo-mechanical etching[J]. Journal of Physics: Photonics, 3, 034019(2021).

    [55] Hu T, Tseng C K, Fu Y H et al. Demonstration of color display metasurfaces via immersion lithography on a 12-inch silicon wafer[J]. Optics Express, 26, 19548-19554(2018).

    [56] Nuwaysir E F, Huang W, Albert T J et al. Gene expression analysis using oligonucleotide arrays produced by maskless photolithography[J]. Genome Research, 12, 1749-1755(2002).

    [57] Ossiander M, Meretska M L, Hampel H K et al. Extreme ultraviolet metalens by vacuum guiding[J]. Science, 380, 59-63(2023).

    [58] Du B T, Wu Z H, Xia J et al. Large-area all-dielectric metasurface fabricated by an anodized aluminum oxide template[J]. Optics Express, 29, 10465-10470(2021).

    [59] Choi H, Kim J S, Kim W S et al. Realization of high aspect ratio metalenses by facile nanoimprint lithography using water-soluble stamps[J]. PhotoniX, 4, 18(2023).

    [60] Hadibrata W, Wei H M, Krishnaswamy S et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography[J]. Nano Letters, 21, 2422-2428(2021).

    [61] Cheng Q Q, Ma M L, Yu D et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 64, 1525-1531(2019).

    [62] Chang W H, Lin J H, Kuan C H et al. Generation of concentric space-variant linear polarized light by dielectric metalens[J]. Nano Letters, 21, 562-568(2021).

    [63] Huang T Y, Grote R R, Mann S A et al. A monolithic immersion metalens for imaging solid-state quantum emitters[J]. Nature Communications, 10, 2392(2019).

    [64] Domokos P, Adam P, Janszky J et al. Atom de Broglie wave deflection by a single cavity mode in the few-photon limit: quantum prism[J]. Physical Review Letters, 77, 1663-1666(1996).

    [65] Manfrinato V R, Stein A, Zhang L H et al. Aberration-corrected electron beam lithography at the one nanometer length scale[J]. Nano Letters, 17, 4562-4567(2017).

    [66] Wang R X, Intaravanne Y, Li S T et al. Metalens for generating a customized vectorial focal curve[J]. Nano Letters, 21, 2081-2087(2021).

    [67] Paniagua-Domínguez R, Yu Y F, Khaidarov E et al. A metalens with a near-unity numerical aperture[J]. Nano Letters, 18, 2124-2132(2018).

    [68] Ma Z B, Liang S, Xiao K et al. Superhydrophilic polyvinylidene fluoride membrane with hierarchical surface structures fabricated via nanoimprint and nanoparticle grafting[J]. Journal of Membrane Science, 612, 118332(2020).

    [69] Zanut A, Cian A, Cefarin N et al. Nanoelectrode arrays fabricated by thermal nanoimprint lithography for biosensing application[J]. Biosensors, 10, 90(2020).

    [70] Hillmer H, Woidt C, Istock A et al. Role of nanoimprint lithography for strongly miniaturized optical spectrometers[J]. Nanomaterials, 11, 164(2021).

    [71] Yoon G, Kim K, Huh D et al. Single-step manufacturing of hierarchical dielectric metalens in the visible[J]. Nature Communications, 11, 2268(2020).

    [72] Brière G, Ni P N, Héron S et al. An etching-free approach toward large-scale light-emitting metasurfaces[J]. Advanced Optical Materials, 7, 1801271(2019).

    [73] Tomer R, Khairy K, Amat F et al. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy[J]. Nature Methods, 9, 755-763(2012).

    [74] Royer L A, Lemon W C, Chhetri R K et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms[J]. Nature Biotechnology, 34, 1267-1278(2016).

    [75] McDole K, Guignard L, Amat F et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level[J]. Cell, 175, 859-876(2018).

    [76] Shi F H, Qiu M, Zhang L et al. Multiplane illumination enabled by Fourier-transform metasurfaces for high-speed light-sheet microscopy[J]. ACS Photonics, 5, 1676-1684(2018).

    [77] Chang B J, Kittisopikul M, Dean K M et al. Universal light-sheet generation with field synthesis[J]. Nature Methods, 16, 235-238(2019).

    [78] Shi F H, Wen J, Lei D Y. High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces[J]. Nanophotonics, 9, 4043-4051(2020).

    [79] Fan Y L, Chen M K, Qiu M et al. Experimental demonstration of genetic algorithm based metalens design for generating side-lobe-suppressed, large depth-of-focus light sheet[J]. Laser & Photonics Reviews, 16, 2100425(2022).

    [80] Helmchen F, Denk W. Deep tissue two-photon microscopy[J]. Nature Methods, 2, 932-940(2005).

    [81] He H S, Tang H J, Zhou M et al. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm[J]. Advanced Photonics Nexus, 1, 026001(2022).

    [82] Liu Z H, Lu X Y, Villette V et al. Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy[J]. Cell, 185, 3408-3425(2022).

    [83] Arbabi E, Li J Q, Hutchins R J et al. Two-photon microscopy with a double-wavelength metasurface objective lens[J]. Nano Letters, 18, 4943-4948(2018).

    [84] Wang C H, Chen Q M, Liu H L et al. Miniature two-photon microscopic imaging using dielectric metalens[J]. Nano Letters, 23, 8256-8263(2023).

    [85] Kume T, Akasaka T, Kawamoto T et al. Assessment of coronary arterial thrombus by optical coherence tomography[J]. The American Journal of Cardiology, 97, 1713-1717(2006).

    [86] Li X D, Boppart S A, Van Dam J et al. Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett’s esophagus[J]. Endoscopy, 32, 921-930(2000).

    [87] Lam S, Standish B, Baldwin C et al. In vivo optical coherence tomography imaging of preinvasive bronchial lesions[J]. Clinical Cancer Research, 14, 2006-2011(2008).

    [88] Pahlevaninezhad H, Khorasaninejad M, Huang Y W et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 12, 540-547(2018).

    [89] Sun D Q, Yang Y J, Liu S J et al. Excitation and emission dual-wavelength confocal metalens designed directly in the biological tissue environment for two-photon micro-endoscopy[J]. Biomedical Optics Express, 11, 4408-4418(2020).

    [90] Ren H R, Jang J, Li C H et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range[J]. Nature Communications, 13, 4183(2022).

    Chao Yan, Siyi Hu, Bobo Gu. Advances in Microscopic Imaging with Metalenses: Design, Fabrication, and Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211028
    Download Citation