• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 2, 160 (2019)
ZHANG Xue-Wei and GONG Han-Han
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.02.006 Cite this Article
    ZHANG Xue-Wei, GONG Han-Han. A new design of tunable high performance multi-channel optical demultiplexer based on MIM plasmonic ring resonators at telecommunication wavelengths[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 160 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950): 824-830.

    [2] Zhang Q, Huang X G, Lin X S, et al. A subwavelength coupler-type MIM optical filter [J]. Opt. Express, 2009, 17(9): 7549-7554.

    [3] Chen F, Yao D. Tunable multiple all-optical switch based on multi-nanoresonator-coupled waveguide systems containing Kerr material [J]. Opt. Commun., 2014, 312(4): 143-147.

    [4] Wang C, Du C, Yao H, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels [J]. Opt. Express, 2005, 13(26): 10795-10800.

    [5] Abadía N, Bernadin T, Chaisakul P, et al. Low-Power consumption Franz-Keldysh effect plasmonic modulator [J]. Opt. Express, 2014, 22(9): 11236-11243.

    [6] Fan H, Charbonneau R, Berini P. Long-range surface plasmon triple-output Mach-Zehnder interferometers [J]. Opt. Express, 2014, 22(4): 4006-4020.

    [7] Alam M Z, Caspers J N, Aitchison J S, et al. Compact low loss and broadband hybrid plasmonic directional coupler [J]. Opt. Express, 2013, 21(13): 16029-16034.

    [8] Ayad M A, Obayya S S A, Swillam M A. Submicron 1xN ultra wideband MIM plasmonic power splitters [J]. J. Lightwave Technol., 2014, 32(9): 1814-1820.

    [9] Ortegamoux A, Richter I, Schmid J H, et al. Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides [J]. Opt. Express, 2018,26(1): 179-194.

    [10] Morozov Y M, Lapchuk A S, Fu M L, et al. Numerical analysis of end-fire coupling of surface plasmon polaritons in a metal-insulator-metal waveguide using a simple photoplastic connector [J]. Photonics Research, 2018, 6(3): 149-156.

    [11] Chen J, Tao J, Zhang Q, et al. Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters [J]. J. Opt. Soc. Am.B, 2010, 27(2): 323-327.

    [12] Liu D, Wang J, Zhang F, Pan, et al. Tunable plasmonic band-pass filter with dual side-coupled circular ring resonators [J]. Sensors, 2017, 17(3): 585.

    [13] Lu H, Liu X, Mao D, et al. Tunable band-pass plasmonic waveguide filters with nanodisk resonators [J]. Opt. Express, 2010, 18(17): 17922-17927.

    [14] Kong Y, Lin R, Qian W, et al. Active dual-wavelength optical switch-based plasmonic demultiplexer using metal-kerr nonlinear material-metal waveguide [J]. IEEE Photonics Journal, 2017, 9(4): 4501908.

    [15] Jeong M Y, Jin Y M, Continuously tunable optical notch filter and band-pass filter systems that cover the visible to near-infrared spectral ranges [J]. Appl. Opt., 2018, 57(8): 1962-1966.

    [16] Naglich E J, Guyette A C. Reflection-mode bandstop filters with minimum through-line length[J]. IEEE Trans. Microwave Theory & Tech., 2018, 63(10):3479-3486.

    [17] Zhang H, Shen D, Zhang Y. Circular split-ring core resonators used in nanoscale metal-insulator-metal band-stop filters[J]. Laser Phy. Lett., 2014, 11(11):115902.

    [18] Amini A, Aghili S, Golmohammadi S, et al. Design of microelectromechanically tunable metal-insulator-metal plasmonic band-pass/stop filter based on slit waveguides[J]. Opt. Commun., 2017, 403:226-233.

    [19] Tao J, Huang X G, Zhu J H. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators[J]. Opt. Express, 2010, 18(11):11111-11116.

    [20] Wang G, Lu H, Liu X, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt. Express, 2011, 19(4):3513-3518.

    [21] Naghizade S, Sattariesfahlan S M. Tunable high performance 16-channel demultiplexer on 2D photonic crystal ring resonator operating at telecom wavelengths[J]. Journal of Optical Communications, 2018.

    [22] Liu H, Gao Y, Zhu B, et al. A T-shaped high resolution plasmonic demultiplexer based on perturbations of two nanoresonators[J]. Opt. Commun., 2015, 334:164-169.

    ZHANG Xue-Wei, GONG Han-Han. A new design of tunable high performance multi-channel optical demultiplexer based on MIM plasmonic ring resonators at telecommunication wavelengths[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 160
    Download Citation