• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 5, 2142005 (2021)
Arseniy A. Kapkov1、*, Alexey N. Semenov2, Petr B. Ermolinskiy1, An-drei E. Lugovtsov1, and Alexa-nder V. Priezzhev1
Author Affiliations
  • 1Faculty of Physics, Lomonosov Moscow State University Leninskie Gory, Moscow 119991, Russia
  • 2Faculty of Biology, Lomonosov Moscow State University Leninskie Gory, Moscow 119991, Russia
  • show less
    DOI: 10.1142/s1793545821420050 Cite this Article
    Arseniy A. Kapkov, Alexey N. Semenov, Petr B. Ermolinskiy, An-drei E. Lugovtsov, Alexa-nder V. Priezzhev. Forces of RBC interaction with single endothelial cells in stationary conditions: Measurements with laser tweezers[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2142005 Copy Citation Text show less
    References

    [1] O. E. Fadyukova, A. E. Lugovtsov, A. V. Priezzhev, V. B. Koshelev, "Optical study of blood rheological properties for krushinsky–molodkina strain rats with diabetes mellitus and acute disturbances of the cerebral circulation," Izv. Saratov Univ. (N.S.), Ser. Phys. 17(2), 111–120 (2017).

    [2] P. B. Ermolinskiy, A. E. Lugovtsov, A. I. Maslyanitsina, A. N. Semenov, L. I. Dyachuk, A. V. Priezzhev, "In vitro assessment of microrheological properties of erythrocytes in norm and pathology with optical methods," Ser. Biomech. 32, 20–25 (2018).

    [3] B. Furie, B. C. Furie, "Mechanisms of thrombus formation. Mechanisms of disease," N. Engl. J. Med. 359(9), 938–949 (2008).

    [4] J. L. Wautier, M. P. Wautier, "Molecular basis of erythrocyte adhesion to endothelial cells in diseases," Clin. Hemorheol. Microcirc. 53(1–2), 11–21 (2013).

    [5] L. F. Brass, "Thrombin and platelet activation," Chest 124(3 Suppl.), 18S–25S (2003).

    [6] S. Yedgar, D. K. Kaul, G. Barshtein, "RBC adhesion to vascular endothelial cells: More potent than RBC aggregation in inducing circulatory disorders," Microcirculation 15(7), 581–583 (2008).

    [7] L. R. Languino, J. Plescia, A. Duperray, "Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway," Cell 73(7), 1423–1434 (1993).

    [8] E. Dejana, S. Colella, L. R. Languino, G. Balconi, G. C. Corbascio, P. C. Marchisio, "Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cells in vitro," J. Cell Biol. 104(5), 1403–1411 (1987).

    [9] D. Lominadze, W. L. Dean, S. C. Tyagi, A. M. Roberts, "Mechanisms of fibrinogen-induced microvascular dysfunction during cardiovascular disease," Acta Physiol. 198(1), 1–13 (2010).

    [10] M. Ge, G. Tang, T. J. Ryan, A. B. Malik, "Fibrinogen degradation product fragment D induces endothelial cell detachment by activation of cellmediated fibrinolysis," J. Clin. Invest. 90(6), 2508– 2516 (1992).

    [11] E. Kucukal, Y. Man, E. Quinn, N. Tewari, R. An, A. Ilich, N. Key, J. Little, U. Gurkan, "Red blood cell adhesion to ICAM-1 is mediated by fibrinogen and is associated with right-to-left shunts in sickle cell disease," Blood Adv. 4(15), 3688–3698 (2020).

    [12] Y. Yang, H. Eng, B. Neu, "Erythrocyte-endothelium adhesion can be induced by dextran," Langmuir 26(4), 2680–2683 (2010).

    [13] C. C. Termeer, J. M. Weiss, E. Sch€opf, W. Vanscheidt, J. C. Simon, "The low molecular weight Dextran 40 inhibits the adhesion of T lymphocytes to endothelial cells," Clin. Exp. Immunol. 114(3), 422–426 (1998).

    [14] P. Rajendran, T. Rengarajan, J. Thangavel, Y. Nishigaki, D. Sakthisekaran, G. Sethi, I. Nishigaki, "The vascular endothelium and human diseases," Int. J. Biol. Sci. 9(10), 1057–1069 (2013).

    [15] J. Wautier, C. Paton, M. Wautier, D. Pintigny, E. Abadie, P. Passa, J. P. Caen, "Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications," N. Engl. J. Med. 305(5), 237–242 (1987).

    [16] H. S. Jung, M. Shimizu-Albergine, X. Shen, F. Kramer, D. Shao, A. Vivekanandan-Giri, S. Pennathur, R. Tian, J. E. Kanter, K. E. Bornfeldt, "TNF-a induces acyl-CoA synthetase 3 to promote lipid droplet formation in human endothelial cells," J. Chem. Inf. Model. 53(9), 1689–1699 (2013).

    [17] M. J. Telen, "Role of adhesion molecules and vascular endothelium in the pathogenesis of sickle cell disease," Hematology Am. Soc. Hematol. Educ. Program 1, 84–90 (2007).

    [18] C. H. Woo, Y. W. Eom, M. H. Yoo, H. J. You, H. J. Han, W. K. Song, Y. J. Yoo, J. S. Chun, J. Hong, "Tumor necrosis factor- generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade," J. Biol.Chem. 275(41), 32357–32362 (2000).

    [19] R. Sandoval, P. Lazcano, F. Ferrari, N. Pinto- Pardo, C. Gonzalez-Billault, E. Utreras, "TNF- increases production of reactive oxygen species through Cdk5 activation in nociceptive neurons," Front. Physiol. 9, Article 65, 1–13 (2018).

    [20] R. G. Kilboum, B. Paula, "Endothelial cell production of nitrogen oxides in response to interferon 7 in combination with tumor necrosis factor, interleukin- 1, or endotoxin," Natl. Cancer Inst. 82(9), 772–776 (1990).

    [21] K. Svoboda, S. M. Block, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).

    [22] H. Hocheng, C. Tseng, "Mechanical and optical design for assembly of vascular endothelial cells using laser guidance and tweezers," Opt. Commun. 281(17), 4435–4441 (2008).

    [23] M. Bessis, "Echinocytes," Springer Sci. Bus. Media 3(1), 13–20 (1974).

    [24] A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156–159 (1970).

    [25] A. Ashkin, J. Dziedzic, J. Bjorkholm, S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11(5), 288– 290 (1986).

    [26] Z. J. Ulanowski, I. R. Williams, "Optical tweezers," Phys. Educ. 31(3), 179–182 (1996).

    [27] A. A. R. Neves, C. L. Cesar, "Analytical calculation of optical forces on spherical particles in optical tweezers: Tutorial," JOSA 36(6), 1525–1532 (2019).

    [28] Y. Jun, S. K. Tripathy, B. R. J. Narayanareddy, M. K. Mattson-Hoss, S. P. Gross, "Calibration of optical tweezers for in vivo force measurements: How do different approaches compare?," Biophys. J. 107(6), 1474–1484 (2014).

    [29] J. Gieseler, J. R. Gomez-Solano, A. Magazzù, I. P. Castillo, L. P. García, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A. V. Arzola, K. Volke-Sepúlveda, G. Volpe, "Optical tweezers — from calibration to applications: A tutorial," Adv. Opt. Photonics 13(1), 74 (2021).

    [30] A. Yu. Maklygin, A. V. Priezzhev, A. V. Karmenyan, S. Yu. Nikitin, I. S. Obolensky, A. E. Lugovtsov, K. Lee, "Measurement of the force of interaction between erythrocytes in an aggregate using laser tweezers," Quantum Electron. 42(6), 500–504 (2012).

    [31] T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, "Calculation and optical measurement of laser trapping forces on non-spherical particles," J. Quant. Spectrosc. Radiat. Transf. 70(4–6), 627– 637 (2001).

    [32] Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, H. Kitajima, "Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques," Opt. Express 16(19), 15115–15122 (2008).

    [33] J. L. Wautier, D. Pintigny, M. P. Wautier, R. C. Paton, F. Galacteros, P. Passa, J. P. Caen, "Fibrinogen, a modulator of erythrocyte adhesion to vascular endothelium," J. Lab. Clin. Med. 101, 911– 920 (1983).

    [34] J. L. Wautier, M. P. Wautier, D. Pintigny, "Factors involved in cell adhesion to vascular endothelium," Blood Cells 9, 221–234 (1983).

    [35] R. Parra-Medina, S. Herrera, J. Mejía, "Comments to: A systematic review of pathological findings in COVID-19: A pathophysiological timeline and possible mechanisms of disease progression," Mod. Pathol. 19–20 (2020).

    [36] A. E. Lugovtsov, Y. I. Gurfinkel, P. B. Ermolinskiy, A. I. Maslyanitsina, L. I. Dyachuk, A. V. Priezzhev, "Optical assessment of alterations of microrheologic and microcirculation parameters in cardiovascular diseases," Biomed. Opt. Express 10(8), 3974–3980 (2019).

    [37] A. V. Priezzhev, K. Lee, N. N. Firsov, J. Lademann, "Optical study of RBC aggregation in whole blood samples and single cells," Chapter 1. in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, Edi. 2nd Edition. Vol. 2Methods, (SPIE Press, Bellingham, 2016), pp. 5–36.

    [38] K. Lee, M. Kinnunen, A. V. Danilina, V. D. Ustinov, S. Shin, I. Meglinski, A. V. Priezzhev, "Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation," J. Biomech. 49(7), 1021– 1026 (2016).

    [39] F. A. Carvalho, S. Connell, G. Miltenberger- Miltenyi, S. V. Pereira, A. Tavares, R. A. S. Ari?ns, N. C. Santos, "Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes," ACS Nano 4(8), 4609–4620 (2010).

    [40] A. F. Guedes, F. A. Carvalho, I. Malho, N. Lousada, L. Sargento, and N. C. Santos, "Atomic force microscopy as a tool to evaluate the risk of cardiovascular diseases in patients," Nat. Nanotechnol. 11(8), 687–692 (2016).

    [41] A. F. Guedes, F. A. Carvalho, C. Moreira, J. B. Nogueira and N. C. Santos, "Essential arterial hypertension patients present higher cell adhesion forces, contributing to fibrinogen-dependent cardiovascular risk," Nanoscale 9(39), 14897–14906 (2017).

    [42] A. F. Guedes et al., "Sensing adhesion forces between erythrocytes and ' fibrinogen, modulating fibrin clot architecture and function," Nanomed. Nanotechnol. Biol. Med. 14(3), 909–918 (2018).

    [43] K. Rack, V. Huck, M. Hoore, D. A. Fedosov, S. W. Schneider, G. Gompper, "Margination and stretching of von Willebrand factor in the blood stream enable adhesion," Sci. Rep. 7(1), 1–12 (2017).

    [44] T. J. Templeton, D. B. Keister, O. Muratova, J. L. Procter, D. C. Kaslow, "Adherence of erythrocytes during exflagellation of Plasmodium falciparum microgametes is dependent on erythrocyte surface sialic acid and glycophorins," J. Exp. Med. 187(10), 1599–1609 (1998).

    [45] H. Ulrich, M. Pillat, "CD147 as a Target for COVID-19 Treatment: Suggested effects of azithromycin and stem cell engagement," Stem Cell Rev. Rep. 16(3), 434–440 (2020).

    [46] A. N. Semenov, A. E. Lugovtsov, E. A. Shirshin, B. P. Yakimov, P. B. Ermolinskiy, P. Y. Bikmulina, D. S. Kudryavtsev, P. S. Timashev, A. V. Muravyov, C. Wagner, S. Shin, A. V. Priezzhev, "Assessment of fibrinogen macromolecules interaction with red blood cells membrane by means of laser aggregometry, flow cytometry, and optical tweezers combined with microfluidics," Biomolecules 10(10), 1–20 (2020).

    [47] J. Jagtap, G. Sharma, A. K. Parchur, V. Gogineni, C. Bergom, S. White, M. J. Flister, A. Joshi, "Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging: errata," Biomed. Opt. Express 9(6), 2543 (2018).

    [48] J. K. Armstrong, R. B. Wenby, H. J. Meiselman, T. C. Fisher, "The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation," Biophys. J. 87(6), 4259–4270 (2004).

    [49] D. Flormann, E. Kuder, P. Lipp, C. Wagner, L. Kaestner, "Is there a role of C-reactive protein in red blood cell aggregation?," Int. J. Lab. Hematol. 37(4), 474–482 (2015).

    [50] N. J. Wandersee, R. C. Punzalan, M. P. Retting, M. D. Kennedy, N. M. Pajewski, R. L. Sabina, J. P. Skott, P. S. Low, C. A. Hillery, "Erythrocyte adhesion is modified by alterations in cellular tonicity and volume," Br. J. Haematol. 131(3), 366–377 (2005).

    [51] M. C. Wagner, J. R. Eckman, T. M. Wick, "Histamine increases sickle erythrocyte adherence to endothelium," Br. J. Haematol. 132(4), 512–522 (2006).

    [52] B. Marcos-Ramiro, D. García-Weber, J. Millan, "TNF-induced endothelial barrier disruption: Beyond actin and Rho," Thromb. Haemost. 112(6), 1088–1102 (2014).

    Arseniy A. Kapkov, Alexey N. Semenov, Petr B. Ermolinskiy, An-drei E. Lugovtsov, Alexa-nder V. Priezzhev. Forces of RBC interaction with single endothelial cells in stationary conditions: Measurements with laser tweezers[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2142005
    Download Citation