• International Journal of Extreme Manufacturing
  • Vol. 2, Issue 2, 22003 (2020)
Min Ming1, Yingxin Luo2, Yu-Rong Liang1, Jing-Yi Zhang2, Hui-Zong Duan2, Hao Yan2, Yuan-Ze Jiang1, Ling-Feng Lu2, Qin Xiao2, Zebing Zhou1, and Hsien-Chi Yeh2、*
Author Affiliations
  • 1MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
  • 2Tianqin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
  • show less
    DOI: 10.1088/2631-7990/ab8864 Cite this Article
    Min Ming, Yingxin Luo, Yu-Rong Liang, Jing-Yi Zhang, Hui-Zong Duan, Hao Yan, Yuan-Ze Jiang, Ling-Feng Lu, Qin Xiao, Zebing Zhou, Hsien-Chi Yeh. Ultraprecision intersatellite laser interferometry[J]. International Journal of Extreme Manufacturing, 2020, 2(2): 22003 Copy Citation Text show less
    References

    [1] LIGO 2020 (www.ligo.caltech.edu/)

    [2] LISA 2020 (www.lisamission.org/)

    [3] Ni W T 2013 Astrod-gw: overview and progress Int. J. Mod. Phys. D 22 1341004

    [4] Luo J et al 2016 TianQin: a space-borne gravitational wave detector Class. Quantum Grav. 33 035010

    [5] Hu W R and Wu Y L 2017 The Taiji program in space for gravitational wave physics and the nature of gravity Natl Sci. Rev. 4 685–6

    [6] Kawamura S et al 2006 The Japanese space gravitational wave antenna—DECIGO Class. Quantum Grav. 23 S125–31

    [7] Roberts M, Taylor P and Gill P 1999 Laser linewidth at the sub-hertz level NPL Report CLM 8 National Physics Laboratory

    [8] Sullivan D B, Allan D W, Howe D A and Walls F L 1990 Characterization of Clocks and Oscillators (Boulder, CO: National Institute of Standards and Technology)

    [9] Danzmann K and Rüdiger A 2003 LISA technology—concept, status, prospects Class. Quantum Grav. 20 S1–S9

    [10] Danzmann K and Prince T 2011 LISA Assessment Study Report (Yellow Book) ESA/SRE(2011)3 European Space Agency

    [11] Sheard B S, Gray M B, McClelland D E and Shaddock D A 2003 Laser frequency stabilization by locking to a LISA arm Phys. Lett. A 320 9–21

    [12] Shaddock D A, Ware B, Spero R E and Vallisneri M 2004 Postprocessed time-delay interferometry for LISA Phys. Rev. D 70 081101

    [13] Kane T J and Byer R L 1985 Monolithic, unidirectional single-mode Nd:YAG ring laser Opt. Lett. 10 65–67

    [14] Hildebrand U, Lange R and Smutny B 2006 Fiber-optic components for the laser communication terminal on TerraSAR-X 16 PPT online (https://photonics. gsfc.nasa.gov/)

    [15] Muehlnikel G, K¨ampfner H, Heine F, Zech H, Troendle D, Meyer R and Phillip-May S 2012 The alphasat GEO laser communication terminal flight acceptance tests Proc. Int. Conf. on Space Optical Systems and Applications (Ajaccio, Corsica, France)

    [16] Armano M et al 2016 Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results Phys. Rev. Lett. 116 231101

    [17] Abich K et al 2019 In-orbit performance of the GRACE follow-on laser ranging interferometer Phys. Rev. Lett. 123 031101

    [18] Freitag I, Tünnermann A and Welling H 1995 Power scaling of diode-pumped monolithic Nd:YAG lasers to output powers of several watts Opt. Commun. 115 511–5

    [19] Tr?bs M 2005 Laser Development and Stabilization for the Spaceborne Interferometric Gravitational Wave Detector LISA (Hannover: Universit¨at Hannover)

    [20] Tr?bs M, d'Arcio L, Heinzel G and Danzmann K 2009 Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA J. Opt. Soc. Am. B 26 1137–40

    [21] Numata K, Chen J R and Camp J 2010 Fiber laser development for LISA J. Phys. Conf. Ser. 228 012043

    [22] Numata K and Camp J 2012 Experimental performance of a single-mode ytterbium-doped fiber ring laser with intracavity modulator Laser Phys. Lett. 9 575–80

    [23] Numata K, Camp J, Krainak M A and Stolpner L 2010 Performance of planar-waveguide external cavity laser for precision measurements Opt. Express 18 22781–8

    [24] Numata K and Camp J 2012 Precision laser development for interferometric space missions NGO, SGO, and GRACE follow-on J. Phys. Conf. Ser. 363 012054

    [25] Camp J, Numata K and Krainak M 2017 Progress and plans for a US laser system for LISA J. Phys. Conf. Ser. 840 012013

    [26] Schwander T et al 2017 New 808 nm high power laser diode pump module for space applications Proc. SPIE 10567 105671C

    [27] Traub M, Plum H D, Hoffmann H D and Schwander T 2007 Spaceborne fiber coupled diode laser pump modules for intersatellite communications Proc. SPIE 6736 673618

    [28] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Laser phase and frequency stabilization using an optical resonator Appl. Phys. B 31 97–105

    [29] Black E D 2001 An introduction to Pound–Drever–Hall laser frequency stabilization Am. J. Phys. 69 79–87

    [30] Pierce R et al 2012 Stabilized lasers for space applications: a high TRL optical cavity reference system Proc. 2012 Conf. on Lasers and Electro-Optics (San Jose, CA: IEEE) pp 1–2

    [31] Nicklaus K et al 2017 High stability laser for next generation gravity missions Proc. SPIE 10563 105632T

    [32] D?ringshoff K, Schuldt T, Kovalchuk E V, Stühler J, Braxmaier C and Peters A 2017 A flight-like absolute optical frequency reference based on iodine for laser systems at 1064 nm Appl. Phys. B 123 183

    [33] Leibrandt D R, Bergquist J C and Rosenband T 2013 Cavity-stabilized laser with acceleration sensitivity below 10?12 g?1 Phys. Rev. A 87 023829

    [34] Leibrandt D R, Thorpe M J, Notcutt M, Drullinger R E, Rosenband T and Bergquist J C 2011 Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments Opt. Express 19 3471–82

    [35] Didier A et al 2018 Ultracompact reference ultralow expansion glass cavity Appl. Opt. 57 6470–3

    [36] ′Swierad D et al 2016 Ultra-stable clock laser system development towards space applications Sci. Rep. 6 33973

    [37] Chen Q F, Nevsky A, Cardace M, Schiller S, Legero T, H¨afner S, Uhde A and Sterr U 2014 A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10?15 Rev. Sci. Instrum. 85 113107

    [38] Webster S and Gill P 2011 Force-insensitive optical cavity Opt. Lett. 36 3572–4

    [39] Luo Y X, Li H Y, Liang Y R, Duan H Z, Zhang J Y and Yeh H-C 2016 A preliminary prototype of laser frequency stabilization for spaceborne interferometry missions Proc. 2016 European Frequency and Time Forum (York: IEEE) pp 1–4

    [40] Elliffe E J et al 2005 Hydroxide-catalysis bonding for stable optical systems for space Class. Quantum Grav. 22 S257–67

    [41] Luo Y X, Li H Y and Yeh H C 2016 Note: digital laser frequency auto-locking for inter-satellite laser ranging Rev. Sci. Instrum. 87 056105

    [42] Arie A, Schiller S, Gustafson E K and Byer R L 1992 Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine Opt. Lett. 17 1204–6

    [43] Nakagawa K, Shimo-oku A, Nakagawa K and Musha M 2016 Developments of highly frequency and intensity stabilized lasers for space gravitational wave detector decigo/pre-decigo Proc. SPIE 10562 105620H

    [44] Acef O and Du Burck F 2019 Nd:YAG laser frequency stabilized for space applications Proc. SPIE 10565 1056568

    [45] Zang E J, Cao J P, Li Y, Li C Y, Deng Y K and Gao C Q 2007 Realization of four-pass I2 absorption cell in 532-nm optical frequency standard IEEE Trans. Instrum. Meas. 56 673–6

    [46] Gohlke M, Schuldt T, D?ringshoff K, Peters A, Johann U, Weise D and Braxmaier C 2015 Adhesive bonding for optical metrology systems in space applications J. Phys. Conf. Ser. 610 012039

    [47] Schkolnik V et al 2017 JOKARUS-design of a compact optical iodine frequency reference for a sounding rocket mission EPJ Quantum Technol. 4 9

    [48] Jennrich O, Stebbins R T, Bender P L and Pollack S 2001 Demonstration of the LISA phase measurement principle Class. Quantum Grav. 18 4159–64

    [49] Pollack S E, Jennrich O, Stebbins R T and Bender P 2003 Status of LISA phase measurement work in the US Class. Quantum Grav. 20 S193–9

    [50] Pollack S E and Stebbins R T 2006 Demonstration of the zero-crossing phasemeter with a LISA test-bed interferometer Class. Quantum Grav. 23 4189–200

    [51] Ware B, Folkner W M, Shaddock D, Spero R, Halverson P, Harris I and Rogstad T 2006 Phase measurement system for inter-spacecraft laser metrology Proc. 2006 Earth Science Technology Conf. (Maryland, MD: NASA)

    [52] Hsu M T, Littler I C M, Shaddock D A, Herrmann J, Warrington R B and Gray M B 2010 Subpicometer length measurement using heterodyne laser interferometry and all-digital rf phase meters Opt. Lett. 35 4202–4

    [53] De Vine G, Rabeling D S, Slagmolen B J J, Lam T T Y, Chua S, Wuchenich D M, McClelland D E and Shaddock D A 2009 Picometer level displacement metrology with digitally enhanced heterodyne interferometry Opt. Express 17 828–37

    [54] Wand V, Guzm′an F, Heinzel G and Danzmann K 2006 LISA phasemeter development AIP Conf. Proc. 873 689–96

    [55] Bykov I, Delgado J E, Marín A F G, Heinzel G and Danzmann K 2009 LISA phasemeter development: advanced prototyping J. Phys. Conf. Ser. 154 012017

    [56] Gerberding O, Sheard B, Bykov I, Kullmann J, Delgado J J E, Danzmann K and Heinzel G 2013 Phasemeter core for intersatellite laser heterodyne interferometry: modelling, simulations and experiments Class. Quantum Grav. 30 235029

    [57] Schwarze T S, Gerberding O, Cervantes F G, Heinzel G and Danzmann K 2014 Advanced phasemeter for deep phase modulation interferometry Opt. Express 22 18214–23

    [58] Gerberding O et al 2015 Readout for intersatellite laser interferometry: measuring low frequency phase fluctuations of high-frequency signals with microradian precision Rev. Sci. Instrum. 86 074501

    [59] Schwarze T S, Barranco G F, Penkert D, Kaufer M, Gerberding O and Heinzel G 2019 Picometer-stable hexagonal optical bench to verify LISA phase extraction linearity and precision Phys. Rev. Lett. 122 081104

    [60] Burnett M C 2010 Development of an ultra-precise digital phasemeter for the LISA gravitational wave detector Thesis Lulea University of Technology

    [61] Liang Y R, Duan H Z, Yeh H C and Luo J 2012 Fundamental limits on the digital phase measurement method based on cross-correlation analysis Rev. Sci. Instrum. 83 095110

    [62] Liang Y R, Duan H Z, Xiao X L, Wei B B and Yeh H C 2015 Note: inter-satellite laser range-rate measurement by using digital phase locked loop Rev. Sci. Instrum. 86 016106

    [63] Liang Y R 2018 Note: a new method for directly reducing the sampling jitter noise of the digital phasemeter Rev. Sci. Instrum. 89 036106

    [64] Liu H S, Dong Y H, Li Y Q, Luo Z R and Jin G 2014 The evaluation of phasemeter prototype performance for the space gravitational waves detection Rev. Sci. Instrum. 85 024503

    [65] Liu H S, Luo Z R and Jin G 2018 The development of phasemeter for Taiji space gravitational wave detection Microgravity Sci. Technol. 30 775–81

    [66] McNamara P W 2005 Weak-light phase locking for LISA Class. Quantum Grav. 22 S243–7

    [67] Danzmann K 2017 LISA—Laser Interferometer Space Antenna: A Proposal in Response to the ESA Call for L3 Mission Concepts (Hannover: Leibniz Universitat Hannover and Max Planck Institute for Gravitational Physics)

    [68] Diekmann C, Steier F, Sheard B, Heinzel G and Danzmann K 2009 Analog phase lock between two lasers at LISA power levels J. Phys. Conf. Ser. 154 012020

    [69] Photonics Enclycopedia 2020 (www.rp-photonics.com/ beam_divergence.html)

    [70] Bender P L 2000 LISA–Laser interferometer space antenna: a cornerstone mission for the observation of gravitational waves Report ESA-SCI(2000)11 European Space Agency

    [71] Enloe L H and Rodda J L 1965 Laser phase-locked loop Proc. IEEE 53 165–6

    [72] Ramos R T and Seeds A J 1990 Delay, linewidth and bandwidth limitations in optical phase-locked loop design Electron. Lett. 26 389–91

    [73] Win M Z, Chen C C and Scholtz R A 1991 Optical phase-locked loop for free-space laser communications with heterodyne detection Proc. SPIE 1417 42–52

    [74] Santarelli G, Clairon A, Lea S N and Tino G M 1994 Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz Opt. Commun. 104 339–44

    [75] Le Gou?t J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A and dos Santos F P 2009 Wide bandwidth phase-locked diode laser with an intra-cavity electro-optic modulator Opt. Commun. 282 977–80

    [76] Xu Z X, Zhang X, Huang K K and Lu X H 2012 A digital optical phase-locked loop for diode lasers based on field programmable gate array Rev. Sci. Instrum. 83 093104

    [77] Liao A C, Ni W T and Shy J T 2002 Pico-watt and femto-watt weak-light phase locking Int. J. Mod. Phys. D 11 1075–85

    [78] Ye J and Hall J L 1999 Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements Opt. Lett. 24 1838–40

    [79] McNamara P W, Ward H and Hough J 1998 Laser phase-locking techniques for LISA: experimental status AIP Conf. Proc. 456 143–7

    [80] Dick G J, Tu M R, Strekalov M D, Birnbaum K and Yu N 2008 Optimal phase lock at femtowatt power levels for coherent optical deep-space transponder IPN Prog. Rep. 42 1–17

    [81] Francis S P, Lam T T Y, McKenzie K, Sutton A J, Ward R L, McClelland D E and Shaddock D A 2014 Weak-light phase tracking with a low cycle slip rate Opt. Lett. 39 5251–4

    [82] Viterbi A J 1966 Phase-locked-loop behavior in the presence of noise Principles of Coherent Communication (New York: McGraw-Hill) pp 77–120

    [83] Tolker-Nielsen T and Oppenhauser G 2002 In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX Proc. SPIE 4635 1–15

    [84] Jono T et al 2006 OICETS on-orbit laser communication experiments Proc. SPIE 6105 610503

    [85] Sheard B S, Heinzel G, Danzmann K, Shaddock D A, Klipstein W M and Folkner W M 2012 Intersatellite laser ranging instrument for the GRACE follow-on mission J. Geod. 86 1083–95

    [86] Yeh H C, Yan Q Z, Liang Y R, Wang Y and Luo J 2011 Intersatellite laser ranging with homodyne optical phase locking for Space Advanced Gravity Measurements mission Rev. Sci. Instrum. 82 044501

    [87] Heinzel G et al 2004 The LTP interferometer and phasemeter Class. Quantum Grav. 21 S581–7

    [88] Cirillo F and Gath P F 2009 Control system design for the constellation acquisition phase of the LISA mission J. Phys. Conf. Ser. 154 012014

    [89] Wuchenich D M R et al 2014 Laser link acquisition demonstration for the GRACE Follow-On mission Opt. Express 22 11351–66

    [90] Luo Z R, Wang Q L, Mahrdt C, Goerth A and Heinzel G 2017 Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission Appl. Opt. 56 1495–500

    [91] Zhang J Y, Ming M, Jiang Y Z, Duan H Z and Yeh H C 2018 Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission Rev. Sci. Instrum. 89 064501

    [92] Manojlovi′c L M 2011 Quadrant photodetector sensitivity Appl. Opt. 50 3461–9

    Min Ming, Yingxin Luo, Yu-Rong Liang, Jing-Yi Zhang, Hui-Zong Duan, Hao Yan, Yuan-Ze Jiang, Ling-Feng Lu, Qin Xiao, Zebing Zhou, Hsien-Chi Yeh. Ultraprecision intersatellite laser interferometry[J]. International Journal of Extreme Manufacturing, 2020, 2(2): 22003
    Download Citation