• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1815006 (2022)
Zhiguo Zhou*, Yiyao Li, Jiangwei Cao, and Shunfan Di
Author Affiliations
  • School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/LOP202259.1815006 Cite this Article Set citation alerts
    Zhiguo Zhou, Yiyao Li, Jiangwei Cao, Shunfan Di. Surface Target Detection Algorithm Based on 3D Lidar[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1815006 Copy Citation Text show less
    Lidar point clouds in different scenes. (a) Ground point clouds; (b) calm water surface point clouds
    Fig. 1. Lidar point clouds in different scenes. (a) Ground point clouds; (b) calm water surface point clouds
    Algorithm block diagram
    Fig. 2. Algorithm block diagram
    Lidar water surface echo data. (a) (b) Calm water surface; (c) (d) wave water surface
    Fig. 3. Lidar water surface echo data. (a) (b) Calm water surface; (c) (d) wave water surface
    DBSCAN filtering algorithm based on water surface point clouds
    Fig. 4. DBSCAN filtering algorithm based on water surface point clouds
    DBSCAN clustering. (a) Wave point clouds over water; (b) clustering result
    Fig. 5. DBSCAN clustering. (a) Wave point clouds over water; (b) clustering result
    Water surface target detection algorithm
    Fig. 6. Water surface target detection algorithm
    Structure of feature learning network
    Fig. 7. Structure of feature learning network
    VFE layer structure
    Fig. 8. VFE layer structure
    Region proposal network architecture
    Fig. 9. Region proposal network architecture
    Experimental platform
    Fig. 10. Experimental platform
    Measured data. (a) Spheres; (b) tri-pyramid; (c) cylindrical; (d) multi-objective
    Fig. 11. Measured data. (a) Spheres; (b) tri-pyramid; (c) cylindrical; (d) multi-objective
    DBSCAN-VoxelNet loss value in the training process
    Fig. 12. DBSCAN-VoxelNet loss value in the training process
    Construction of surface target detection simulation environment
    Fig. 13. Construction of surface target detection simulation environment
    Virtual wave fluctuation state in the first view of ship
    Fig. 14. Virtual wave fluctuation state in the first view of ship
    Target setting of water virtual environment
    Fig. 15. Target setting of water virtual environment
    PerformanceParameter
    Number of channelsTOF ranging 16 channels
    Ranging20 cm to 150 m(target reflectivity is 20%)
    AccuracyWithin ±2 cm(typical value)
    Vertical view±15°(30° in total)
    Vertical angular resolution
    Horizontal perspective360°
    Azimuth resolution0.09°(5 Hz)to 0.36°(20 Hz)
    Rotation speed300/600/1200 rad·min-1(5/10/20 Hz)
    Table 1. RS-LiDAR-16 sensor parameters
    APspheresAPtri-pyramidAPcylindricalAPmulti-objective
    5 m10 m15 m5 m10 m15 m5 m10 m15 m5 m10 m15 m
    0.8760.8650.7930.8810.8730.8660.8580.8520.8440.8120.7980.776
    Table 2. Detection results of DBSCAN-VoxelNet on water surface target dataset
    ParameterVoxelNetDBSCAN-VoxelNet
    mAP0.8120.824
    Average detection speed /(frame·s-10.070.08
    Table 3. mAP detection results for water surface target
    EnvironmentmAPAverage detection speed /(frame·s-1
    Without wave0.8410.08
    With wave0.8970.08
    Table 4. mAP of DBSCAN-VoxelNet at different environments
    Zhiguo Zhou, Yiyao Li, Jiangwei Cao, Shunfan Di. Surface Target Detection Algorithm Based on 3D Lidar[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1815006
    Download Citation