• Photonics Research
  • Vol. 12, Issue 2, 244 (2024)
Xin Qi1、†, Jiaju Wu1、†, Feng Wu2, Song Zhao3, Chao Wu3、4, Yueyang Min1, Mina Ren1, Yufei Wang5、6、*, Haitao Jiang1, Yunhui Li1、4, Zhiwei Guo1, Yaping Yang1, Wanhua Zheng5, Hong Chen1, and Yong Sun1、7、*
Author Affiliations
  • 1MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
  • 3Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 4Department of Electrical Engineering, Tongji University, Shanghai 201804, China
  • 5State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 6e-mail: yufeiwang@semi.ac.cn
  • 7e-mail: yongsun@tongji.edu.cn
  • show less
    DOI: 10.1364/PRJ.507081 Cite this Article Set citation alerts
    Xin Qi, Jiaju Wu, Feng Wu, Song Zhao, Chao Wu, Yueyang Min, Mina Ren, Yufei Wang, Haitao Jiang, Yunhui Li, Zhiwei Guo, Yaping Yang, Wanhua Zheng, Hong Chen, Yong Sun. Observation of maximal intrinsic chirality empowered by dual quasi-bound states in the continuum in a planar metasurface[J]. Photonics Research, 2024, 12(2): 244 Copy Citation Text show less
    References

    [1] Y. Chen, J. Gao, X. Yang. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett., 18, 520-527(2018).

    [2] M. Schüler, T. Pincelli, S. Dong. Polarization-modulated angle-resolved photoemission spectroscopy: toward circular dichroism without circular photons and Bloch wave-function reconstruction. Phys. Rev. X., 12, 011019(2022).

    [3] Y. Chen, X. Yang, J. Gao. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage. Light Sci. Appl., 8, 45(2019).

    [4] E. Hendry, T. Carpy, J. Johnston. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol., 5, 783-787(2010).

    [5] M. Manoccio, M. Esposito, E. Primiceri. Femtomolar biodetection by a compact core-shell 3D chiral metamaterial. Nano Lett., 21, 6179-6187(2021).

    [6] Y. Chen, X. Yang, J. Gao. Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces. Light Sci. Appl., 7, 84(2018).

    [7] Q. Wang, E. Plum, Q. Yang. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [8] G. Zheng, H. Muhlenbernd, M. Kenney. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [9] C. Wu, H. Li, X. Yu. Metallic helix array as a broadband wave plate. Phys. Rev. Lett., 107, 177401(2011).

    [10] S. Yoo, Q. H. Park. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett., 114, 203003(2015).

    [11] Z. Wang, F. Cheng, T. Winsor. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology, 27, 412001(2016).

    [12] S. Yang, Z. Liu, S. Hu. Spin-selective transmission in chiral folded metasurfaces. Nano Lett., 19, 3432-3439(2019).

    [13] Z. Li, W. Liu, H. Cheng. Spin-selective full-dimensional manipulation of optical waves with chiral mirror. Adv. Mater., 32, 1907983(2020).

    [14] B. Semnani, J. Flannery, R. Al Maruf. Spin-preserving chiral photonic crystal mirror. Light Sci. Appl., 9, 23(2020).

    [15] C. Wang, Z. Li, R. Pan. Giant intrinsic chirality in curled metasurfaces. ACS Photonics, 7, 3415-3422(2020).

    [16] M. Masyukov, A. Vozianova, A. Grebenchukov. Optically tunable terahertz chiral metasurface based on multi-layered graphene. Sci. Rep., 10, 3157(2020).

    [17] Z. Wang, L. Jing, K. Yao. Origami-based reconfigurable metamaterials for tunable chirality. Adv. Mater., 29, 1700412(2017).

    [18] V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett., 97, 167401(2006).

    [19] M. Qiu, L. Zhang, Z. Tang. 3D metaphotonic nanostructures with intrinsic chirality. Adv. Funct. Mater., 28, 1803147(2018).

    [20] W. Chen, Q. Yang, Y. Chen. Extremize optical chiralities through polarization singularities. Phys. Rev. Lett., 126, 253901(2021).

    [21] Y. Hou, H. M. Leung, C. T. Chan. Ultrabroadband optical superchirality in a 3D stacked-patch plasmonic metamaterial designed by two-step glancing angle deposition. Adv. Funct. Mater., 26, 7807-7816(2016).

    [22] M. Liu, D. A. Powell, R. Guo. Polarization-induced chirality in metamaterials via optomechanical interaction. Adv. Opt. Mater., 5, 1600760(2016).

    [23] A. G. Mark, J. G. Gibbs, T. C. Lee. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater., 12, 802-807(2013).

    [24] P. Wang, R. Hu, X. Huang. Terahertz chiral metamaterials enabled by textile manufacturing. Adv. Mater., 34, 2110590(2022).

    [25] Y. Zhao, M. A. Belkin, A. Alù. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun., 3, 870(2012).

    [26] S. Yang, Z. Liu, H. Yang. Intrinsic chirality and multispectral spin-selective transmission in folded eta-shaped metamaterials. Adv. Opt. Mater., 8, 1901448(2019).

    [27] J. Wu, H. Jiang, Z. Guo. Giant optical chirality in dielectric metasurfaces induced by toroidal dipole resonances. Opt. Lett., 48, 916-919(2023).

    [28] J. Wu, X. Xu, X. Su. Observation of giant extrinsic chirality empowered by quasi-bound states in the continuum. Phys. Rev. Appl., 16, 064018(2021).

    [29] W. Liu, B. Wang, Y. Zhang. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett., 123, 116104(2019).

    [30] A. Y. Zhu, W. T. Chen, A. Zaidi. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl., 7, 17158(2018).

    [31] C. W. Hsu, B. Zhen, A. D. Stone. Bound states in the continuum. Nat. Rev. Mater., 1, 16408(2016).

    [32] P. Hu, C. Xie, Q. Song. Bound states in the continuum based on the total internal reflection of Bloch waves. Natl. Sci. Rev., 10, nwac043(2023).

    [33] P. Hu, J. Wang, Q. Jiang. Global phase diagram of bound states in the continuum. Optica, 9, 1353-1361(2022).

    [34] A. F. Sadreev. Interference traps waves in an open system: bound states in the continuum. Rep. Prog. Phys., 84, 055901(2021).

    [35] Z. Wang, Q. Xue, S. Zhao. Study on the characteristics of a photonic crystal sensor with rectangular lattice based on bound states in the continuum. J. Phys. D, 55, 175106(2022).

    [36] Y. Wang, Z. Han, Y. Du. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface. Nanophotonics, 10, 1295-1307(2021).

    [37] M. S. Hwang, H. C. Lee, K. H. Kim. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun., 12, 4135(2021).

    [38] J. H. Yang, Z. T. Huang, D. N. Maksimov. Low-threshold bound state in the continuum lasers in hybrid lattice resonance metasurfaces. Laser Photonics Rev., 15, 2100118(2021).

    [39] Q. Song, J. Hu, S. Dai. Coexistence of a new type of bound state in the continuum and a lasing threshold mode induced by PT symmetry. Sci. Adv., 6, 1160(2020).

    [40] K. Koshelev, Y. Tang, K. Li. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics, 6, 1639-1644(2019).

    [41] K. Koshelev, S. Kruk, E. Melik-Gaykazyan. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [42] Z. Liu, Y. Xu, Y. Lin. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [43] J. Li, J. Li, C. Zheng. Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum. Appl. Phys. Lett., 119, 241105(2021).

    [44] J. Wang, L. Shi, J. Zi. Spin hall effect of light via momentum-space topological vortices around bound states in the continuum. Phys. Rev. Lett., 129, 236101(2022).

    [45] B. Wang, W. Liu, M. Zhao. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).

    [46] Y. Lin, T. Feng, S. Lan. On-chip diffraction-free beam guiding beyond the light cone. Phys. Rev. Appl., 13, 064032(2020).

    [47] Z. Zhang, F. Qin, Y. Xu. Negative refraction mediated by bound states in the continuum. Photonics Res., 9, 1592-1597(2021).

    [48] Z. Zhang, X. Yin, Z. Chen. Observation of intensity flattened phase shifting enabled by unidirectional guided resonance. Nanophotonics, 10, 4467-4475(2021).

    [49] X. Yin, J. Jin, M. Soljacic. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467-471(2020).

    [50] Y. Xie, Z. Zhang, Y. Lin. Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl., 15, 044024(2021).

    [51] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [52] K. Koshelev, S. Lepeshov, M. Liu. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [53] F. Wu, J. Wu, Z. Guo. Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).

    [54] F. Wu, D. Liu, S. Xiao. Bandwidth-tunable near-infrared perfect absorption of graphene in a compound grating waveguide structure supporting quasi-bound states in the continuum. Opt. Express, 29, 41975-41989(2021).

    [55] A. Overvig, N. Yu, A. Alù. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [56] M. V. Gorkunov, A. A. Antonov, Y. S. Kivshar. Metasurfaces with maximum chirality empowered by bound states in the continuum. Phys. Rev. Lett., 125, 093903(2020).

    [57] M. V. Gorkunov, A. A. Antonov, V. R. Tuz. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces. Adv. Opt. Mater., 9, 2100797(2021).

    [58] X. Zhang, Y. Liu, J. Han. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [59] K. H. Kim, J. R. Kim. High-Q chiroptical resonances by quasi-bound states in the continuum in dielectric metasurfaces with simultaneously broken in-plane inversion and mirror symmetries. Adv. Opt. Mater., 9, 2101162(2021).

    [60] T. Shi, Z. L. Deng, G. Geng. Planar chiral metasurfaces with maximal tunable chiroptical response driven by bound states in the continuum. Nat. Commun., 13, 4111(2022).

    [61] Q. S. Liu, M. H. Chao, W. J. Zhang. Dual-band chiral nonlinear metasurface supported by quasibound states in the continuum. Ann. Phys., 534, 2200263(2022).

    [62] Y. Tang, Y. Liang, J. Yao. Chiral bound states in the continuum in plasmonic metasurfaces. Laser Photonics Rev., 17, 2200597(2023).

    [63] H. Barkaoui, K. Du, Y. Chen. Merged bound states in the continuum for giant superchiral field and chiral mode splitting. Phys. Rev. B, 107, 045305(2023).

    [64] Y. Chen, H. Deng, X. Sha. Observation of intrinsic chiral bound states in the continuum. Nature, 613, 474-478(2023).

    [65] M. Gandolfi, A. Tognazzi, D. Rocco. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys. Rev. A, 104, 023524(2021).

    [66] H. J. Singh, A. Ghosh. Large and tunable chiro-optical response with all dielectric helical nanomaterials. ACS Photonics, 5, 1977-1985(2018).

    [67] W. T. Chen, K. Y. Yang, C. M. Wang. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225-230(2014).

    [68] F. Alpeggiani, N. Parappurath, E. Verhagen. Quasinormal-mode expansion of the scattering matrix. Phys. Rev. X., 7, 021035(2017).

    [69] L. Cong, R. Singh. Symmetry-protected dual bound states in the continuum in metamaterials. Adv. Opt. Mater., 7, 1900383(2019).

    [70] Y. Cai, Y. Huang, K. Zhu. Symmetric metasurface with dual band polarization-independent high-Q resonances governed by symmetry-protected BIC. Opt. Lett., 46, 4049-4052(2021).

    [71] F. Wu, M. Luo, J. Wu. Dual quasibound states in the continuum in compound grating waveguide structures for large positive and negative Goos-Hänchen shifts with perfect reflection. Phys. Rev. A, 104, 023518(2021).

    [72] C. Zheng, J. Li, S. Wang. Optically tunable all-silicon chiral metasurface in terahertz band. Appl. Phys. Lett., 118, 051101(2021).

    [73] D. Conteduca, I. Barth, G. Pitruzzello. Dielectric nanohole array metasurface for high-resolution near-field sensing and imaging. Nat. Commun., 12, 3293(2021).

    Xin Qi, Jiaju Wu, Feng Wu, Song Zhao, Chao Wu, Yueyang Min, Mina Ren, Yufei Wang, Haitao Jiang, Yunhui Li, Zhiwei Guo, Yaping Yang, Wanhua Zheng, Hong Chen, Yong Sun. Observation of maximal intrinsic chirality empowered by dual quasi-bound states in the continuum in a planar metasurface[J]. Photonics Research, 2024, 12(2): 244
    Download Citation