• Acta Optica Sinica
  • Vol. 29, Issue s1, 37 (2009)
Wu Tong*, Ding Zhihua, Wang Kai, Xu Lei, Chen Minghui, and Wang Chuan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    Wu Tong, Ding Zhihua, Wang Kai, Xu Lei, Chen Minghui, Wang Chuan. Swept Source Optical Coherence Tomography based on Scanning Fiber Probe[J]. Acta Optica Sinica, 2009, 29(s1): 37 Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin et al.. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178~1181

         D. Huang, E. A. Swanson, C. P. Lin et al.. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178~1181

    [2] Yu Xiaofeng, Ding Zhihua, Chen Yuheng et al.. Development of fiber-based optical coherence tomographic imaging system[J]. Acta Optica Sinica, 2006, 26(2): 235~238

         Yu Xiaofeng, Ding Zhihua, Chen Yuheng et al.. Development of fiber-based optical coherence tomographic imaging system[J]. Acta Optica Sinica, 2006, 26(2): 235~238

    [3] Song Guiju, Ren Hongwu, Zhang Lianying et al.. Experimental research on optical coherence tomography[J]. Acta Optica Sinica, 2000, 20(4): 509~513

         Song Guiju, Ren Hongwu, Zhang Lianying et al.. Experimental research on optical coherence tomography[J]. Acta Optica Sinica, 2000, 20(4): 509~513

    [4] Jiang Yu, Yao Jianquan, Wang Ruikang et al.. Establishment and research of optical coherence tomography[J]. Optical Instruments, 2003, 25(2): 33~37

         Jiang Yu, Yao Jianquan, Wang Ruikang et al.. Establishment and research of optical coherence tomography[J]. Optical Instruments, 2003, 25(2): 33~37

    [5] Dai Lijuan, Wang Huinan, Qian Zhiyu. An optical coherence tomography system using frequency-domain optical delay line[J]. Chinese J. Quantum Electronics, 2006, 23(4): 456~460

         Dai Lijuan, Wang Huinan, Qian Zhiyu. An optical coherence tomography system using frequency-domain optical delay line[J]. Chinese J. Quantum Electronics, 2006, 23(4): 456~460

    [6] S. Yun, G. Tearney, J. de Boer et al.. High-speed optical frequency-domain imaging[J]. Opt. Express, 2003, 11(22): 2953~2963

         S. Yun, G. Tearney, J. de Boer et al.. High-speed optical frequency-domain imaging[J]. Opt. Express, 2003, 11(22): 2953~2963

    [7] F. Fercher, C. K. Hitzenberger, G. Kamp et al.. Measurement of intraocular distances by backscattering spectral interferometry[J]. Opt. Commun., 1995, 117(1~2): 443~448

         F. Fercher, C. K. Hitzenberger, G. Kamp et al.. Measurement of intraocular distances by backscattering spectral interferometry[J]. Opt. Commun., 1995, 117(1~2): 443~448

    [8] G. Hausler, M. W. Lindner. Coherence radar and spectral radar-new tools for dermatological diagnosis[J]. J. Biomed. Opt., 1998, 3: 21~31

         G. Hausler, M. W. Lindner. Coherence radar and spectral radar-new tools for dermatological diagnosis[J]. J. Biomed. Opt., 1998, 3: 21~31

    [9] R. Leitgeb, C. Hitzenberger, A. Fercher. Performance of Fourier domain versus time domain optical coherence tomography[J]. Opt. Express, 2003, 11(8): 889~894

         R. Leitgeb, C. Hitzenberger, A. Fercher. Performance of Fourier domain versus time domain optical coherence tomography[J]. Opt. Express, 2003, 11(8): 889~894

    [10] S. R. Chinn, E. A. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source[J]. Opt. Lett., 1997, 22(5): 340~342

         S. R. Chinn, E. A. Swanson, J. G. Fujimoto. Optical coherence tomography using a frequency-tunable optical source[J]. Opt. Lett., 1997, 22(5): 340~342

    [11] M. Choma, M. Sarunic, C. Yang et al.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt. Express, 2003, 11(18): 2183~2189

         M. Choma, M. Sarunic, C. Yang et al.. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Opt. Express, 2003, 11(18): 2183~2189

    [12] Guillermo J. Tearney, Mark E. Brezinski, Brett E. Bouma et al.. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997, 276(5321): 2037-2039

         Guillermo J. Tearney, Mark E. Brezinski, Brett E. Bouma et al.. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997, 276(5321): 2037-2039

    [13] A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov et al.. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa[J]. Opt. Express, 1997, 1(13): 432~440

         A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov et al.. In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa[J]. Opt. Express, 1997, 1(13): 432~440

    [14] Xiumei Liu, Michael J. Cobb, Yuchuan Chen et al.. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography[J]. Opt. Lett., 2004, 29(15): 1763-1765

         Xiumei Liu, Michael J. Cobb, Yuchuan Chen et al.. Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography[J]. Opt. Lett., 2004, 29(15): 1763-1765

    [15] Y. Pan, H. Xie, G. K. Fedder. Endoscopic optical coherence tomography based on a microelectromechanical mirror[J]. Opt. Lett., 2001, 26(24): 1966-1968

         Y. Pan, H. Xie, G. K. Fedder. Endoscopic optical coherence tomography based on a microelectromechanical mirror[J]. Opt. Lett., 2001, 26(24): 1966-1968

    [16] F. Helmchen, M. S. Fee, D. W. Tank et al.. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals[J]. Neuron, 2001, (31): 903~912

         F. Helmchen, M. S. Fee, D. W. Tank et al.. A miniature head-mounted two-photon microscope: high-resolution brain imaging in freely moving animals[J]. Neuron, 2001, (31): 903~912

    [17] S. A. Boppart, B. E. Bouma, C. Pitris et al.. Forward-imaging instruments for optical coherence tomography[J]. Opt. Lett., 1997, 22(21): 1618~1620

         S. A. Boppart, B. E. Bouma, C. Pitris et al.. Forward-imaging instruments for optical coherence tomography[J]. Opt. Lett., 1997, 22(21): 1618~1620

    [18] Christophe Dorrer, Nadia Belabas, Jean-Pierre Likforman et al.. Spectral resolution and sampling issues in Fourier-transform spectral interferometry[J]. J. Opt. Soc. Am. B, 2000, 17(10): 1795~1802

         Christophe Dorrer, Nadia Belabas, Jean-Pierre Likforman et al.. Spectral resolution and sampling issues in Fourier-transform spectral interferometry[J]. J. Opt. Soc. Am. B, 2000, 17(10): 1795~1802

    [19] R. Huber, M. Wojtkowski, K. Taira et al.. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Opt. Express, 2005, 13(9): 3513~3528

         R. Huber, M. Wojtkowski, K. Taira et al.. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Opt. Express, 2005, 13(9): 3513~3528

    CLP Journals

    [1] Xiong Bing, Wei Wenxiong, He Jianjun. Analysis of Frequency-Modulated Continuous-Wave Lidar Technique for Non-Invasive Blood Glucose Measurement[J]. Acta Optica Sinica, 2011, 31(6): 617001

    [2] Huang Liangmin, Ding Zhihua, Wu Tong. Optimization on Scanning Pattern Realized by Asymmetry Fiber Cantilever Driven by Single Piezo Bender Actuator[J]. Chinese Journal of Lasers, 2011, 38(4): 409002

    Wu Tong, Ding Zhihua, Wang Kai, Xu Lei, Chen Minghui, Wang Chuan. Swept Source Optical Coherence Tomography based on Scanning Fiber Probe[J]. Acta Optica Sinica, 2009, 29(s1): 37
    Download Citation