• Chinese Journal of Lasers
  • Vol. 51, Issue 3, 0307302 (2024)
Youlin Gu1、2、3、*, Xi Zhang1、3, Yihua Hu1、2、3, Fanhao Meng1、3, Guolong Chen1、3, Wanying Ding1、3, and Siyu Wang1、3
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, Anhui , China
  • 2Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui , China
  • 3National University of Defense Technology, Hefei 230037, Anhui , China
  • show less
    DOI: 10.3788/CJL231191 Cite this Article Set citation alerts
    Youlin Gu, Xi Zhang, Yihua Hu, Fanhao Meng, Guolong Chen, Wanying Ding, Siyu Wang. Progress on Extinction Properties of Biomaterials[J]. Chinese Journal of Lasers, 2024, 51(3): 0307302 Copy Citation Text show less
    References

    [1] Xu C Y, Zha B T, Bao J Q et al. Analysis of temporal and spatial distribution characteristics of ammonium chloride smoke particles in confined spaces[J]. Defence Technology, 18, 1269-1280(2022).

    [2] Baranwal N, Mahulikar S P. Review of infrared signature suppression systems using optical blocking method[J]. Defence Technology, 15, 432-439(2019).

    [3] Gu Y L, Lu W, Fang J J et al. Research progress on artificially prepared infrared extinction materials and their extinction properties(invited)[J]. Infrared and Laser Engineering, 49, 20201018(2020).

    [4] Wang X Y. Development of anti-infrared smoke material and its extinction performance(invited)[J]. Infrared and Laser Engineering, 49, 20201019(2020).

    [5] Hu Y H, Zhao X Y, Gu Y L et al. Significant broadband extinction abilities of bioaerosols[J]. Science China Materials, 62, 1033-1045(2019).

    [6] Sun D J, Hu Y H, Gu Y L et al. Determination and model construction of microbes’ complex refractive index in far infrared band[J]. Acta Physica Sinica, 62, 094218(2013).

    [7] Zhao X Y, Hu Y H, Gu Y L et al. Optical properties of eukaryotic and prokaryotic microbial aerosols in the 0.25‒15 μm band[J]. Infrared and Laser Engineering, 48, 1017004(2019).

    [8] Zhao X Y, Hu Y H, Gu Y L et al. Analysis of optical properties of bio-smoke materials in the 0.25‒14 μm band[J]. Chinese Physics B, 28, 034201(2019).

    [9] Huang B K, Hu Y H, Gu Y L et al. Influences of artificial biological particles structures on far-infrared extinction performance[J]. Proceedings of SPIE, 10605, 106051M(2017).

    [10] Huang B K, Hu Y H, Gu Y L et al. Influences of artificial biological particles structures on broadband extinction performance[J]. Infrared and Laser Engineering, 47, 0321002(2018).

    [11] Huang B K, Hu Y H, Gu Y L et al. Aerodynamic property of artificial biological extinction material[J]. Infrared and Laser Engineering, 47, 0204005(2018).

    [12] Ding W Y, Gu Y L, Hu Y H et al. Optimized shape and structure of artificial bioparticles to enhance the optical extinction properties[J]. Optical Engineering, 61, 095109(2022).

    [13] Ding W Y, Gu Y L, Hu Y H et al. Study of infrared optical properties of polydisperse aggregated bioparticles based on optimized BCCA model[J]. Proceedings of SPIE, 12556, 125561H(2023).

    [14] Lu W, Gu Y L, Fang J J et al. 10.6 μm laser extinction performance of polydisperse biological aggregate particles[J]. Chinese Journal of Lasers, 48, 0401019(2021).

    [15] Ding W Y, Gu Y L, Hu Y H et al. Ballistic cluster-cluster aggregation model optimization[J]. AIP Advances, 13, 035017(2023).

    [16] Gu Y L, Wang C, Yang L et al. Infrared extinction before and after Aspergillus niger spores inactivation[J]. Infrared and Laser Engineering, 44, 36-41(2015).

    [17] Gu Y L, Hu Y H, Zhao X Y et al. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3‒5 micrometers[J]. Optics Express, 26, 15842-15850(2018).

    [18] Cao H, Gu Y L, Chen G L et al. Discrimination of dead and viable biological spore based on the convolutional neural network[J]. Proceedings of SPIE, 12558, 125580K(2023).

    [19] Cao H, Gu Y L, Fang J J et al. Application of stacking ensemble learning model in quantitative analysis of biomaterial activity[J]. Microchemical Journal, 183, 108075(2022).

    [20] Cao H, Gu Y L, Hu Y H et al. Mid-infrared spectroscopy coupled with chemometrics for quantitative determination of biomaterial activity[J]. Optik, 281, 170854(2023).

    [21] He H H, Gu Y L, Fang J J et al. Numerical simulation of wind speed impact on infrared extinction area in the aerosol diffusion[J]. Proceedings of SPIE, 12343, 1234327(2022).

    [22] Li L, Hu Y H, Wang X et al. Diffusion characteristics of biological extinction material[J]. Infrared and Laser Engineering, 46, 0621001(2017).

    [23] He H H, Gu Y L, Hu Y H et al. Analysis of infrared extinction performance of the smoke screen in the field[J]. Optical Engineering, 61, 105110(2022).

    [24] Wang X Y, Hu Y H, Gu Y L et al. Effects of relative humidity on the broadband extinction performance of bioaerosol[J]. Optics Express, 27, 23801-23813(2019).

    [25] Gu Y L, Hu Y H, Zhao X Y et al. Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material[J]. Optik, 176, 535-541(2019).

    [26] Grosse P, Offermann V. Analysis of reflectance data using the Kramers-Kronig relations[J]. Applied Physics A, 52, 138-144(1991).

    [27] Booij H C, Thoone G P J M. Generalization of Kramers-Kronig transforms and some approximations of relations between viscoelastic quantities[J]. Rheologica Acta, 21, 15-24(1982).

    [28] Bohren C F, Huffman D R. Classical theories of optical constants[M]. Absorption and scattering of light by small particles, 226-267(2007).

    [29] Segal-Rosenheimer M, Linker R. Impact of the non-measured infrared spectral range of the imaginary refractive index on the derivation of the real refractive index using the Kramers-Kronig transform[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 1147-1161(2009).

    [30] Li L, Hu Y H, Gu Y L et al. Measurement and analysis of complex refractive index of pear in pink outer band[J]. Spectroscopy and Spectral Analysis, 35, 89-92(2015).

    [31] Gu Y L, Hu Y H, Zhao X Y et al. Determination of infrared complex refractive index of microbial materials[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 217, 305-314(2018).

    [32] Chen X, Hu Y H, Gu Y L et al. Analysis of compounding and broadband extinction properties of novel bioaerosols[J]. Photonics, 10, 357(2023).

    [33] Sun D J, Hu Y H, Gu Y L et al. Preparation and performance testing of metallic biologic particles[J]. Acta Photonica Sinica, 42, 555-558(2013).

    [34] Wang P, Liu H X, Zhao Y Z et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band[J]. Applied Spectroscopy, 70, 1456-1463(2016).

    [35] Zhao X Y, Hu Y H, Gu Y L et al. The effect of water content of microbial material on the extinction performance of infrared band[J]. Proceedings of SPIE, 10826, 1082610(2018).

    [36] Zhao X Y, Hu Y H, Gu Y L et al. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm[J]. Proceedings of SPIE, 9678, 967817(2015).

    [37] Wang X Y, Hu Y H, Gu Y L et al. Analysis of factors affecting the broadband extinction performance of bioaerosol[J]. Optik, 201, 163527(2020).

    [38] Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains[J]. The Astrophysical Journal Letters, 186, 705-714(1973).

    [39] Li L, Hu Y H, Gu Y L et al. Infrared extinction performance of Aspergillus niger spores[J]. Infrared and Laser Engineering, 43, 2175-2179(2014).

    [40] Li L, Hu Y H, Gu Y L et al. Measurement and analysis on optical characteristics of Aspergillus oryzae spores in infrared band[J]. Proceedings of SPIE, 9677, 96772H(2015).

    [41] Chen G L, Gu Y L, Hu Y H et al. Research progress of biological extinction materials[J]. Proceedings of SPIE, 12617, 126172R(2023).

    [42] Gu Y L, Zhang X, Hu Y H et al. Research progress of aerosol particle aggregation model(invited)[J]. Infrared and Laser Engineering, 52, 20230243(2023).

    [43] Li L, Hu Y H, Gu Y L et al. Infrared extinction performance of randomly oriented microbial-clustered agglomerate materials[J]. Applied Spectroscopy, 71, 2555-2562(2017).

    [44] Chen X, Hu Y H, Gu Y L et al. Extinction characteristics of biological aggregated particles in the far infrared band[J]. Infrared and Laser Engineering, 48, 0704002(2019).

    [45] Zhao X Y, Hu Y H, Gu Y L et al. Transmittance of laser in the microorganism aggregated particle swarm[J]. Acta Optica Sinica, 35, 0616001(2015).

    [46] Zhao X Y, Hu Y H, Gu Y L et al. Aggregation-driven reductions in the mass extinction coefficient of bioaerosols[J]. Optik, 184, 115-120(2019).

    [47] Chen X, Hu Y H, Gu Y L et al. Extinction characteristics of biological aggregated particles with different porosity in the far infrared band[M]. Frontier Research and Innovation in Optoelectronics Technology and Industry, 71-76(2018).

    [48] Wang X Y, Hu Y H, Gu Y L et al. Comparison of two agglomerated particle simulation models for extinction performance calculation of bioaerosol[C], JW4A.25(2019).

    [49] Hu Y H, Huang B K, Gu Y L et al. Model construction of biological particles’ average extinction efficiency factor in far infrared band[J]. Infrared and Laser Engineering, 47, 1004003(2018).

    [50] Chen X, Hu Y H, Gu Y L et al. Atmospheric suspension settling characteristics of biological extinction material[J]. Infrared and Laser Engineering, 48, 0521003(2019).

    [51] Gu Y L, Chen G L, Hu Y H et al. Research progress on the deposition and diffusion of aerosols (invited)[J]. Infrared and Laser Engineering, 51, 20220313(2022).

    [52] Tang I N, Munkelwitz H R. Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance[J]. Journal of Geophysical Research, 99, 18801-18808(1994).

    [53] Browning N D, Chisholm M F, Pennycook S J. Atomic-resolution chemical analysis using a scanning transmission electron microscope[J]. Nature, 366, 143-146(1993).

    [54] Li L, Hu Y H, Gu Y L et al. Infrared extinction performance of biological materials[J]. Spectroscopy and Spectral Analysis, 37, 3430-3434(2017).

    [55] Gu Y L, Cao G H, Hu Y H et al. Measurement of ultraviolet and infrared composite extinction performance of biological materials[J]. Infrared and Laser Engineering, 47, 0321003(2018).

    [56] Zhao X Y, Hu Y H, Gu Y L et al. A comparison of infrared extinction performances of bioaerosols and traditional smoke materials[J]. Optik, 181, 293-300(2019).

    [57] He H H, Gu Y L, Fang J J et al. Analysis of factors influencing infrared extinction area of explosive smokescreen[J]. Heliyon, 8, e11818(2022).

    Youlin Gu, Xi Zhang, Yihua Hu, Fanhao Meng, Guolong Chen, Wanying Ding, Siyu Wang. Progress on Extinction Properties of Biomaterials[J]. Chinese Journal of Lasers, 2024, 51(3): 0307302
    Download Citation