• Chinese Journal of Lasers
  • Vol. 51, Issue 3, 0307302 (2024)
Youlin Gu1、2、3、*, Xi Zhang1、3, Yihua Hu1、2、3, Fanhao Meng1、3, Guolong Chen1、3, Wanying Ding1、3, and Siyu Wang1、3
Author Affiliations
  • 1State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, Anhui , China
  • 2Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, Anhui , China
  • 3National University of Defense Technology, Hefei 230037, Anhui , China
  • show less
    DOI: 10.3788/CJL231191 Cite this Article Set citation alerts
    Youlin Gu, Xi Zhang, Yihua Hu, Fanhao Meng, Guolong Chen, Wanying Ding, Siyu Wang. Progress on Extinction Properties of Biomaterials[J]. Chinese Journal of Lasers, 2024, 51(3): 0307302 Copy Citation Text show less
    Extinction properties of biological spores[5]. (a)(b) Complex refractive index; (c) transmittance; (d) extinction proportion;(e) scattering proportion; (f) absorption proportion
    Fig. 1. Extinction properties of biological spores[5]. (a)(b) Complex refractive index; (c) transmittance; (d) extinction proportion;(e) scattering proportion; (f) absorption proportion
    Complex refractive indexes of biomaterials in different bands[32]. (a)(c) 0.25‒2.40 µm; (b)(d) 3‒15 µm
    Fig. 2. Complex refractive indexes of biomaterials in different bands[32]. (a)(c) 0.25‒2.40 µm; (b)(d) 3‒15 µm
    Characteristic peaks of the biomaterials[19]. (a) AN0616; (b) AO0622; (c) AP0627
    Fig. 3. Characteristic peaks of the biomaterials[19]. (a) AN0616; (b) AO0622; (c) AP0627
    Scattered fraction of AN02 biomaterials[37]
    Fig. 4. Scattered fraction of AN02 biomaterials[37]
    Calculation flow of biomaterials extinction properties
    Fig. 5. Calculation flow of biomaterials extinction properties
    Extinction efficiency factor Qext of complex structured biological particles[12]. (a) Typical particles; (b)‒(d) chain particles
    Fig. 6. Extinction efficiency factor Qext of complex structured biological particles[12]. (a) Typical particles; (b)‒(d) chain particles
    Extinction properties of monodisperse biological aggregated particles[37]. (a) Aggregated particles models; (b) transmittance; (c) extinction cross-section
    Fig. 7. Extinction properties of monodisperse biological aggregated particles[37]. (a) Aggregated particles models; (b) transmittance; (c) extinction cross-section
    Polydisperse biological aggregated particles models[15]
    Fig. 8. Polydisperse biological aggregated particles models[15]
    Factors affecting extinction properties of biological particles[14]. (a) Porosity; (b) the number of original particles; (c) particle size distribution variance; (d) particle size distribution mean
    Fig. 9. Factors affecting extinction properties of biological particles[14]. (a) Porosity; (b) the number of original particles; (c) particle size distribution variance; (d) particle size distribution mean
    Mass extinction coefficient of different active biomaterials[17]. (a)(c) BB0310; (b)(d) HJ0104
    Fig. 10. Mass extinction coefficient of different active biomaterials[17]. (a)(c) BB0310; (b)(d) HJ0104
    The values of R2 and RMSEP corresponding to different models for the three biomaterials[19]. (a)(b) AN0616; (c)(d) AO0622; (e)(f) AP0627
    Fig. 11. The values of R2 and RMSEP corresponding to different models for the three biomaterials[19]. (a)(b) AN0616; (c)(d) AO0622; (e)(f) AP0627
    Effect of wind speed on smoke screens[23]. (a) Effect on average mass concentration; (b) effect on extinction area; (c) effect on extinction area change rate
    Fig. 12. Effect of wind speed on smoke screens[23]. (a) Effect on average mass concentration; (b) effect on extinction area; (c) effect on extinction area change rate
    Effect of ground roughness on smoke screens[23]. (a) Effect on average mass fraction concentration; (b) effect on extinction area; (c) effect on extinction area change rate
    Fig. 13. Effect of ground roughness on smoke screens[23]. (a) Effect on average mass fraction concentration; (b) effect on extinction area; (c) effect on extinction area change rate
    Humidity growth model of biomaterials[24]. (a)(b) Complex refractive index; (c) particle size
    Fig. 14. Humidity growth model of biomaterials[24]. (a)(b) Complex refractive index; (c) particle size
    SEM photos of different biomaterials[12]. (a) AB0101; (b) AO0301; (c) LA0301; (d) BB0201
    Fig. 15. SEM photos of different biomaterials[12]. (a) AB0101; (b) AO0301; (c) LA0301; (d) BB0201
    IR spectra of different active biomaterials[19]. (a) AN0616; (b) AO0622; (c) AP0627; (d)‒(i) the first derivative spectra
    Fig. 16. IR spectra of different active biomaterials[19]. (a) AN0616; (b) AO0622; (c) AP0627; (d)‒(i) the first derivative spectra
    Smoke box test system[24]
    Fig. 17. Smoke box test system24
    Extinction properties of aggregated particles[37]. (a)(b) Aggregated particles models; (c) transmittance; (d) extinction cross-section
    Fig. 18. Extinction properties of aggregated particles[37]. (a)(b) Aggregated particles models; (c) transmittance; (d) extinction cross-section
    Field test diagram
    Fig. 19. Field test diagram
    Smoke screen images captured by infrared camera in outdoor field test at different time[23]. (a) 0 s; (b) 10 s; (c) 20 s; (d) 30 s
    Fig. 20. Smoke screen images captured by infrared camera in outdoor field test at different time[23]. (a) 0 s; (b) 10 s; (c) 20 s; (d) 30 s
    Youlin Gu, Xi Zhang, Yihua Hu, Fanhao Meng, Guolong Chen, Wanying Ding, Siyu Wang. Progress on Extinction Properties of Biomaterials[J]. Chinese Journal of Lasers, 2024, 51(3): 0307302
    Download Citation