• Matter and Radiation at Extremes
  • Vol. 5, Issue 1, 018201 (2020)
Mei Li, Tianbiao Liu, Yonggang Wang, Wenge Yang, and Xujie Lüa)
Author Affiliations
  • Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China
  • show less
    DOI: 10.1063/1.5133653 Cite this Article
    Mei Li, Tianbiao Liu, Yonggang Wang, Wenge Yang, Xujie Lü. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201 Copy Citation Text show less
    References

    [1] D. Y. Park, H. R. Byun, H. Kim et al. Enhanced stability of perovskite solar cells using organosilane-treated double polymer passivation layers. J. Koraen Phys. Soc., 73, 1787-1793(2018).

    [2] S. Yasuo, K. Akihiro, T. Kenjiro et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [3] E. Köhnen, M. Jošt, A. B. Morales-Vilches et al. Highly efficient monolithic perovskite silicon tandem solar cells: Analyzing the influence of current mismatch on device performance. Sustainable Energy Fuels, 3, 1995-2005(2019).

    [4] C. Xiao, L. Gao, F. Zhang et al. Improving charge transport via intermediate-controlled crystal growth in 2D perovskite solar cells. Adv. Funct. Mater., 29, 1901652(2019).

    [5] E. Lin, C. G. Bischak, A. B. Wong et al. Tunable polaron distortions control the extent of halide demixing in lead halide perovskites. J. Phys. Chem. Lett., 9, 3998-4005(2018).

    [6] Q. Di, J. Zhu, X. Zhao et al. Facile method for the controllable synthesis of CsxPbyBrz-based perovskites. Inorg. Chem., 57, 6206-6209(2018).

    [7] D. Di, S. Lilliu, R. H. Friend et al. Perovskite LEDs. Sci. Video Protocols, 1, 1-5(2019).

    [8] J. Wang, S. Yang, Z. Lin et al. High color rendering index white-light emission from UV-driven LEDs based on single luminescent materials: Two-dimensional perovskites (C6H5C2H4NH3)2PbBrxCl4-x. ACS Appl. Mater. Interfaces, 10, 15980-15987(2018).

    [9] H. Han, H. J. Bolink, C. Zuo et al. Advances in perovskite solar cells. Adv. Sci., 3, 1500324(2016).

    [10] H. J. Snaith, F. Giustino. Toward lead-free perovskite solar cells. ACS Energy Lett., 1, 1233-1240(2016).

    [11] S. Lu, Z. Ma, Z. Liu et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nat. Commun., 9, 4506(2018).

    [12] P. Ščajev, S. Miasojedovas, R. Aleksiejūnas et al. Two regimes of carrier diffusion in vapor-deposited lead-halide perovskites. J. Phys. Chem. C, 121, 21600-21609(2017).

    [13] O. V. Prezhdo, J. Liu. Chlorine doping reduces electron-hole recombination in lead iodide perovskites: Time-domain ab initio analysis. J. Phys. Chem. Lett., 6, 4463-4469(2015).

    [14] Z. Deng, S. Sun, F. H. Isikgor et al. Factors influencing the mechanical properties of formamidinium lead halides and related hybrid perovskites. ChemSusChem, 10, 3740-3745(2017).

    [15] Y. Zhao, K. Zhu. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev., 45, 655-689(2016).

    [16] Y.-C. Chiu, X. Wang, Y. Ling et al. Dynamic electronic junctions in organic–inorganic hybrid perovskites. Nano Lett., 17, 4831-4839(2017).

    [17] J. Breternitz, S. Schorr. What defines a perovskite?. Adv. Energy Mater., 8, 1802366(2018).

    [18] E. H. Sargent, G. Walters. Electro-optic response in germanium halide perovskites. J. Phys. Chem. Lett., 9, 1018-1027(2018).

    [19] G. Niu, X. Guo, L. Wang. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A, 3, 8970-8980(2015).

    [20] J. Li, H. Li, D. Ding et al. Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. J. Mater. Chem. A, 7, 540-548(2019).

    [21] J. Wang, Z. Fan, K. Sun. Perovskites for photovoltaics: A combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A, 3, 18809-18828(2015).

    [22] C. Liu, G. Qi, Y. Cao et al. Pressure-tailored band gap engineering and structure evolution of cubic cesium lead iodide perovskite nanocrystals. J. Phys. Chem. C, 122, 9332-9338(2018).

    [23] H. Murasugi, H. Iguchi, S. Kumagai et al. Organic-inorganic hybrid gold halide perovskites: Structural diversity through cation size. Chem. Eur. J., 25, 9885-9891(2019).

    [24] M. R. Filip, G. Volonakis, A. A. Haghighirad et al. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett., 7, 1254-1259(2016).

    [25] I. García-Benito, V. I. E. Queloz, C. Quarti et al. Fashioning fluorous organic spacers for tunable and stable layered hybrid perovskites. Chem. Mater., 30, 8211-8220(2018).

    [26] H. Lin, Y. Tian, C. Zhou et al. Low-dimensional organometal halide perovskites. ACS Energy Lett., 3, 54-62(2017).

    [27] H. I. Karunadasa, A. Jaffe, Y. Lin. Halide perovskites under pressure: Accessing new properties through lattice compression. ACS Energy Lett., 2, 1549-1555(2017).

    [28] J. Yang, J. Kang, W. Yin et al. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A, 3, 8926-8942(2015).

    [29] F. Rao, S. Wang, M. Tan et al. Pressures tuning the band gap of organic–inorganic trihalide perovskites (MAPbBr3): A first-principles study. J. Electron. Mater., 47, 7204-7211(2018).

    [30] J. Wang, H. Zhu, M. T. Trinh et al. Organic cations might not be essential to the remarkable properties of band edge carriers in lead halide perovskites. Adv. Mater., 29, 1603072(2017).

    [31] M. Yang, X. Ma, J. Gong et al. Electron–rotor interaction in organic–inorganic lead iodide perovskites discovered by isotope effects. J. Phys. Chem. Lett., 7, 2879-2887(2016).

    [32] X. Lu, W. Yang, Q. Jia et al. Pressure-induced dramatic changes in organic-inorganic halide perovskites. Chem. Sci., 8, 6764-6776(2017).

    [33] X. Wu, D. Niesner, M. T. Trinh et al. Trap states in lead iodide perovskites. J. Am. Chem. Soc., 137, 2089-2096(2015).

    [34] M. D. Smith, A. Jaffe, I. C. Smith et al. Between the sheets: Postsynthetic transformations in hybrid perovskites. Chem. Mater., 29, 1868-1884(2017).

    [35] S. Onari, K. Matsuishi, T. Suzuki et al. Excitonic states of alkylammonium lead-iodide layered perovskite semiconductors under hydrostatic pressure to 25 GPa. Phys. Status Solidi B, 223, 177-182(2001).

    [36] J. Im, I. Chung, J.-H. Song et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc., 134, 8579-8587(2012).

    [37] X. Lu, C. C. Stoumpos, Y. Wang et al. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater., 28, 8663-8668(2016).

    [38] Y. Ying, X. Luo, H. Huang. Pressure-induced topological nontrivial phase and tunable optical properties in all-inorganic halide perovskites. J. Phys. Chem. C, 122, 17718-17725(2018).

    [39] Q. He, C. Zhou, H. Lin et al. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng., 137, 38-65(2019).

    [40] Y. Wang, J. Lv, L. Zhang et al. Materials discovery at high pressures. Nat. Rev. Mater., 2, 17005(2017).

    [41] L. Wang, C. Pei. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extremes, 4, 028201(2019).

    [42] B. Chen, H.-K. Mao, J. Chen et al. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59-75(2016).

    [43] Y. Cao, G. Xiao, G. Qi et al. Pressure effects on structure and optical properties in cesium lead bromide perovskite nanocrystals. J. Am. Chem. Soc., 139, 10087-10094(2017).

    [44] A. Nijamudheen, A. V. Akimov. Criticality of symmetry in rational design of chalcogenide perovskites. J. Phys. Chem. Lett., 9, 248-257(2018).

    [45] P. Postorino, L. Malavasi. Chemistry at high pressure: Tuning functional materials properties. MRS Bull., 42, 718-723(2017).

    [46] H.-k. Mao, R. J. Hemley. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys., 66, 671-692(1994).

    [47] A. Katrusiak, M. Szafrański. Photovoltaic hybrid perovskites under pressure. J. Phys. Chem. Lett., 8, 2496-2506(2017).

    [48] P. Postorinoa, L. Malavasi. Pressure-induced effects in organic–inorganic hybrid perovskites. J. Phys. Chem. Lett., 8, 2613-2622(2017).

    [49] A. P. Drozdov, V. S. Minkov, P. P. Kong et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).

    [50] Y. Xia, F. Jin, B. Yang et al. Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure. Nano Lett., 19, 2537-2542(2019).

    [51] Z. Ma, F. Li, G. Qi et al. Structural stability and optical properties of two-dimensional perovskite-like CsPb2Br5 microplates in response to pressure. Nanoscale, 11, 820-825(2019).

    [52] Y. Chen, R. Fu, X. Yong et al. Pressure-induced structural transition and band gap evolution of double perovskite Cs2AgBiBr6 nanocrystals. Nanoscale, 11, 17004-17009(2019).

    [53] M. I. Eremets, I. A. Troyan, A. P. Drozdov et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [54] W. Yang, Y. Wang, X. Lu et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc., 137, 11144-11149(2015).

    [55] W. L. Mao, A. Jaffe, Y. Lin et al. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc., 139, 4330-4333(2017).

    [56] D. T. K. Galeschuk, J. Guan, P. Wang et al. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett., 8, 2119(2017).

    [57] Y. Fang, T. Yin, W. K. Chong et al. High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates. Adv. Mater., 30, 1705017(2018).

    [58] N. Onoda-Yamamuro, O. Yamamuro, T. Matsuo et al. P-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals. J. Phys. Chem. Solids, 53, 277-281(1992).

    [59] Y. Qin, A. R. Uhl, S. Yun et al. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Enegy Environ. Sci., 11, 476-526(2018).

    [60] D. Koushik, W. J. H. Verhees, Y. Kuang et al. High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Enegy Environ. Sci., 10, 91-100(2017).

    [61] M. E. Calvo. Materials chemistry approaches to the control of the optical features of perovskite solar cells. J. Mater. Chem. A, 5, 20561-20578(2017).

    [62] N.-G. Park, M. Grätzel, T. Miyasaka et al. Towards stable and commercially available perovskite solar cells. Nat. Energy, 1, 16152(2016).

    [63] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [64] C. Li, J. Schlipf, M. L. Petrus et al. Capturing the sun: A review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater., 7, 1700264(2017).

    [65] A. R. bin Mohd Yusoff, M. K. Nazeeruddin. Low-dimensional perovskites: From synthesis to stability in perovskite solar cells. Adv. Energy Mater., 8, 1702073(2018).

    [66] M. G. Tucker, D. J. Wilson, I. P. Swainson et al. Pressure response of an organic-inorganic perovskite: Methylammonium lead bromide. Chem. Mater., 19, 2401-2405(2007).

    [67] Y. Fang, J. M. Kadro, T. Baikie et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A, 1, 5628-5641(2013).

    [68] F. Capitani, C. Marini, S. Caramazza et al. Locking of methylammonium by pressure-enhanced H-bonding in (CH3NH3)PbBr3 hybrid perovskite. J. Phys. Chem. Lett., 121, 28125-28131(2017).

    [69] Y. Gong, M. Ji, H. Wang et al. High pressure induced in situ solid-state phase transformation of nonepitaxial grown metal@semiconductor nanocrystals. J. Phys. Chem. Lett., 9, 6544-6549(2018).

    [70] T. Ou, H. Yan, H. Jiao et al. Pressure dependence of mixed conduction and photo responsiveness in organolead tribromide perovskites. J. Phys. Chem. Lett., 8, 2944-2950(2017).

    [71] M. Szafranski, A. Katrusiak. Mechanism of pressure-induced phase transitions, amorphization, and absorption-edge shift in photovoltaic methylammonium lead iodide. J. Phys. Chem. Lett., 7, 3458-3466(2016).

    [72] Y. Liang, Y. Huang, X. Huang et al. New metallic ordered phase of perovskite CsPbI3 under pressure. Adv. Sci., 6, 1900399(2019).

    [73] R. Li, C. Gao, Y. Li et al. Direct-indirect transition of pressurized 2D halide perovskite: Role of benzene ring stack ordering. J. Phys. Chem. Lett., 10, 5687-5693(2019).

    [74] Y. Chen, L. Wang, R. Fu et al. Emission enhancement and bandgap retention of a two-dimensional mixed cation lead halide perovskite under high pressure. J. Mater. Chem. A, 7, 6357-6362(2019).

    [75] L. Yang, Z. Li, C. Liu et al. Optical behaviors of a micro-sized single crystal MAPbI3 plate under high pressure. J. Phys. Chem. C, 123, 30221-30227(2019).

    [76] L. Zhang, K. Wang, L. Wu et al. Pressure-induced broadband emission of 2D organic-inorganic hybrid perovskite (C6H5C2H4NH3)2PbBr4. Adv Sci, 6, 1801628(2019).

    [77] L. Kong, W. Yang, G. Liu et al. Pressure engineering of photovoltaic perovskites. Mater. Today, 27, 91-106(2019).

    [78] Y. Fu, H. Zhu, J. Chen et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater., 4, 169-188(2019).

    [79] M. C. Gelvez-Rueda, D. H. Cao, E. M. Hutter et al. Interconversion between free charges and bound excitons in 2D hybrid lead halide perovskites. J. Phys. Chem. Lett., 121, 26566-26574(2017).

    [80] S. Lee, H. Lin, C. Zhou et al. Organic–inorganic metal halide hybrids beyond perovskites. Mater. Res. Lett., 6, 552-569(2018).

    [81] B. Liu, J. Yan, T. Yin et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes. J. Am. Chem. Soc., 141, 1235-1241(2018).

    [82] G. Liu, J. Gong, L. Kong et al. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc. Natl Acad. Sci., 113, 8910-8915(2016).

    [83] Q. Li, Y. Wang, W. Pan et al. High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite. Angew. Chem., Int. Ed., 56, 15969-15973(2017).

    [84] Q. Zeng, L. Zhang, K. Wang. Pressure-induced structural and optical properties of inorganic halide perovskite CsPbBr3. J. Phys. Chem. Lett., 8, 3752-3758(2017).

    [85] Y. Shi, D. Zhao, Z. Ma et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc., 141, 6504-6508(2019).

    [86] L. Wang, B. Zou, K. Wang. Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide. J. Phys. Chem. Lett., 7, 2556-2562(2016).

    [87] K. Wang, L. Wang, G. Xiao et al. Pressure-induced structural evolution and band gap shifts of organometal halide perovskite-based methylammonium lead chloride. J. Phys. Chem. Lett., 7, 5273-5279(2016).

    [88] A. S. Ahmad, X. Ren, X. Yan et al. Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite. J. Phys. Chem. C, 123, 15204-15208(2019).

    [89] M. Tan, F. Wang, C. Li et al. Unusual pressure-induced electronic structure evolution in organometal halide perovskite predicted from first-principles. Org. Electron., 67, 89-94(2019).

    [90] C. Marini, F. Capitani, S. Caramazza et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite. J. Appl. Phys., 119, 185901(2016).

    [91] C. M. Beavers, Y. Lin, A. Jaffe et al. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci., 2, 201-209(2016).

    [92] Z. Deng, Y. Wu, S. Sun et al. Variable temperature and high-pressure crystal chemistry of perovskite formamidinium lead iodide: A single crystal X-ray diffraction and computational study. Chem. Commun., 53, 7537-7540(2017).

    [93] Y. Lee, D. B. Mitzi, P. W. Barnes et al. Pressure-induced phase transitions and templating effect in three-dimensional organic-inorganic hybrid perovskites. Phys. Rev. B, 68, 020103(2003).

    [94] L. Wang, T. Ou, K. Wang et al. Pressure-induced structural evolution, optical and electronic transitions of nontoxic organometal halide perovskite-based methylammonium tin chloride. Appl. Phys. Lett., 111, 233901(2017).

    [95] X. Ma, T. Ou, H. Yan et al. Pressure effects on the inductive loop, mixed conduction, and photoresponsivity in formamidinium lead bromide perovskite. Appl. Phys. Lett., 113, 262105(2018).

    [96] X. Wu, G. Yuan, S. Qin et al. Pressure-induced phase transformation of CsPbI3 by X-ray diffraction and Raman spectroscopy. Phase Transition, 91, 38-47(2017).

    [97] L. Wang, K. Wang, L. Zhang et al. Pressure-induced structural evolution and optical properties of metal-halide perovskite CsPbCl3. J. Phys. Chem. C, 122, 15220-15225(2018).

    [98] R. Tan, K. Hills-Kimball, Y. Nagaoka et al. Nanocube superlattices of cesium lead bromide perovskites and pressure-induced phase transformations at atomic and mesoscale levels. Adv. Mater., 29, 1606666(2017).

    [99] P. Tongying, L. M. G. Hall, J. C. Beimborn et al. Pressure response of photoluminescence in cesium lead iodide perovskite nanocrystals. J. Phys. Chem. C, 122, 11024-11030(2018).

    [100] J. Zhang, S. Ji, Y. Ma et al. Tunable photoluminescence and an enhanced photoelectric response of Mn2+-doped CsPbCl3 perovskite nanocrystals via pressure-induced structure evolution. Nanoscale, 11, 11660-11670(2019).

    [101] H. Lin, C. Zhou, H. Shi et al. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly stokes-shifted deep-red emission. Angew. Chem., Int. Ed., 57, 1021-1024(2018).

    [102] Q. Li, L. Yin, Z. Chen et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9. Inorg. Chem., 58, 1621-1626(2019).

    [103] C. Ortiz-Cervantes, J. Vazquez-Chavez, P. I. Roman-Roman et al. Thousand-fold conductivity increase in 2D perovskites by polydiacetylene incorporation and doping. Angew. Chem., Int. Ed., 57, 13882-13886(2018).

    [104] C. C. Stoumpos, O. K. Farha, D. H. Cao et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc., 137, 7843-7850(2015).

    [105] Y. Sun, Y. Chen, J. Peng et al. Composition engineering in two-dimensional Pb-Sn-Alloyed perovskites for efficient and stable solar cells. ACS Appl. Mater. Interfaces, 10, 21343-21348(2018).

    [106] O. F. Mohammed, M. I. Saidaminov, O. M. Bakr. Low-dimensional-networked metal halide perovskites: The next big thing. ACS Energy Lett., 2, 889-896(2017).

    [107] Y. Tian, C. Zhou, H. Lin et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chem. Sci., 9, 586-593(2018).

    [108] C. A. Feild, D. B. Mitzi, S. Wang et al. Conducting layered organic-inorganic halides containing -oriented perovskite sheets. Science, 267, 1473-1476(1995).

    [109] E. R. Dohner, H. I. Karunadasa, E. T. Hoke. Self-assembly of broadband white-light emitters. J. Am. Chem. Soc., 136, 1718-1721(2014).

    [110] Y. Tian, Z. Yuan, C. Zhou et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun., 8, 14051(2017).

    [111] S. Liu, C. K. Gan, S. Sun et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv., 5, eaav9445(2019).

    [112] P. Guo, G. Liu, L. Kong et al. Two regimes of bandgap red shift and partial ambient retention in pressure-treated two-dimensional perovskites. ACS Energy Lett., 2, 2518-2524(2017).

    [113] X. F. Liu, Y. Yuan, X. Ma et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure. Adv. Sci., 6, 1900240(2019).

    [114] Y. Lin, H. I. Karunadasa, D. Umeyama. Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mater., 28, 3241-3244(2016).

    [115] D. N. Minh, Y. Yuan, L. A. T. Nguyen et al. Pressure-induced fluorescence enhancement of FAαPbBr2+α composite perovskites. Nanoscale, 11, 5868-5873(2019).

    [116] J. Jagielski, S. Yakunin, S. Kumar et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano, 10, 9720-9729(2016).

    [117] M. Karnachoriti, A. G. Kontos, G. Bounos et al. Defect perovskites under pressure: Structural evolution of Cs2SnX6 (X = Cl, Br, I). J. Phys. Chem. C, 122, 24004-24013(2018).

    [118] L. Zhang, Z. Dong, L. Wu et al. High-pressure band-gap engineering and metallization in the perovskite derivative Cs3Sb2I9. ChemSusChem, 12, 3971-3976(2019).

    Mei Li, Tianbiao Liu, Yonggang Wang, Wenge Yang, Xujie Lü. Pressure responses of halide perovskites with various compositions, dimensionalities, and morphologies[J]. Matter and Radiation at Extremes, 2020, 5(1): 018201
    Download Citation