• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1716003 (2022)
Nanning Yi, Rong Zong, and Rongrong Qian*
Author Affiliations
  • School of Information, Yunnan University, Kunming 650500, Yunnan , China
  • show less
    DOI: 10.3788/LOP202259.1716003 Cite this Article Set citation alerts
    Nanning Yi, Rong Zong, Rongrong Qian. Broadband Switchable Bifunction Terahertz Polarization Converter Based on Dirac Semimetal[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1716003 Copy Citation Text show less
    References

    [1] Vieweg N, Fischer B M, Reuter M et al. Ultrabroadband terahertz spectroscopy of a liquid crystal[J]. Optics Express, 20, 28249-28256(2012).

    [2] Janek M, Zich D, Naftaly M. Terahertz time-domain spectroscopy response of amines and amino acids intercalated smectites in far-infrared region[J]. Materials Chemistry and Physics, 145, 278-287(2014).

    [3] Taylor Z D, Singh R S, Bennett D B et al. THz medical imaging: in vivo hydration sensing[J]. IEEE Transactions on Terahertz Science and Technology, 1, 201-219(2011).

    [4] Federici J F, Schulkin B, Huang F et al. THz imaging and sensing for security applications: explosives, weapons and drugs[J]. Semiconductor Science and Technology, 20, S266-S280(2005).

    [5] Meissner T, Wentz F J. Polarization rotation and the third Stokes parameter: the effects of spacecraft attitude and Faraday rotation[J]. IEEE Transactions on Geoscience and Remote Sensing, 44, 506-515(2006).

    [6] Sinchuk K, Dudley R, Graham J D et al. Tunable negative group index in metamaterial structures with large form birefringence[J]. Optics Express, 18, 463-472(2010).

    [7] Wallace V P, MacPherson E, Zeitler J A et al. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 25, 3120-3133(2008).

    [8] Zhuang Z, Suh S W, Patel J S. Polarization controller using nematic liquid crystals[J]. Optics Letters, 24, 694-696(1999).

    [9] Zheludev N I. The road ahead for metamaterials[J]. Science, 328, 582-583(2010).

    [10] Zhang J F, Yuan X D, Qin S Q. Tunable terahertz and optical metamaterials[J]. Chinese Journal of Optics and Applied Optics, 7, 349-364(2014).

    [11] Lu T G, Qiu P Z, Lian J Q et al. Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials[J]. Optical Materials, 95, 109230(2019).

    [12] Jiang Y N, Wang L, Wang J et al. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics Express, 25, 27616-27623(2017).

    [13] Meng L J, Zhao D, Li Q et al. Polarization-sensitive perfect absorbers at near-infrared wavelengths[J]. Optics Express, 21, A111-A122(2013).

    [14] Shen X P, Yang Y, Zang Y Z et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation[J]. Applied Physics Letters, 101, 154102(2012).

    [15] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [16] Taubner T, Korobkin D, Urzhumov Y et al. Near-field microscopy through a SiC superlens[J]. Science, 313, 1595(2006).

    [17] Liu W W, Chen S Q, Li Z C et al. Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface[J]. Optics Letters, 40, 3185-3188(2015).

    [18] Zhang J G, Tian J P, Xiao S Y et al. Methodology for high purity broadband near-unity THz linear polarization converter and its switching characteristics[J]. IEEE Access, 8, 46505-46517(2020).

    [19] Xu J, Li R Q, Qin J et al. Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface[J]. Optics Express, 26, 20913-20919(2018).

    [20] Liu M D. Studies on sensing and absorbing mechanism of Dirac semi-metal terahertz metamaterials[D](2018).

    [21] Dai L L, Zhang Y P, Guo X H et al. Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals[J]. Optical Materials Express, 8, 3238-3249(2018).

    [22] Meng W L, Hou B Y, Cao Q H et al. Dynamically tunable high-efficiency broadband terahertz linear polarization converter based on Dirac semimetal metamaterials[J]. Microwave and Optical Technology Letters, 62, 2703-2707(2020).

    [23] Dai L L, Zhang Y P, Zhang H Y et al. Broadband tunable terahertz cross-polarization converter based on Dirac semimetals[J]. Applied Physics Express, 12, 075003(2019).

    [24] Xu K D, Li J X, Zhang A X et al. Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips[J]. Optics Express, 28, 11482-11492(2020).

    [25] Zhao Y T, Wu B, Huang B J et al. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface[J]. Optics Express, 25, 7161-7169(2017).

    [26] Meng H Y, Shang X J, Xue X X et al. Bidirectional and dynamically tunable THz absorber with Dirac semimetal[J]. Optics Express, 27, 31062-31074(2019).

    [27] Tian Y S, Guo X H, Dai L L et al. Broadband tunable terahertz polarizers based on Dirac semimetal[J]. Chinese Journal of Lasers, 46, 0614033(2019).

    [28] Zhang J G, Tian J P, Li L et al. A tunable THz broadband pure linear polarization converter based on Dirac semimetals[J]. Journal of Quantum Optics, 26, 60-70(2020).

    [29] Wang T L, Zhang H Y, Zhang Y et al. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide[J]. Optics Express, 28, 17434-17448(2020).

    [30] Zhang L B, Zhou P H, Lu H P et al. Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator[J]. Optical Materials Express, 6, 1393-1404(2016).

    [31] Zhang W. Study on absorption and polarization conversion of frequency selective surface[D](2018).

    [32] Yan D X, Meng M, Li J S et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 28, 29843-29854(2020).

    [33] Cong L Q, Cao W, Zhang X Q et al. A perfect metamaterial polarization rotator[J]. Applied Physics Letters, 103, 171107(2013).

    [34] Zhang Y, Feng Y J, Zhao J M. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave[J]. Carbon, 163, 244-252(2020).

    [35] Peng L, Li X F, Jiang X et al. A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene[J]. Journal of Lightwave Technology, 36, 4250-4258(2018).

    [36] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    Nanning Yi, Rong Zong, Rongrong Qian. Broadband Switchable Bifunction Terahertz Polarization Converter Based on Dirac Semimetal[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1716003
    Download Citation