• Laser & Optoelectronics Progress
  • Vol. 59, Issue 8, 0815009 (2022)
Yang Liu, Chunping Hou, Bangbang Ge, Zhipeng Wang*, and Cheng Peng
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202259.0815009 Cite this Article Set citation alerts
    Yang Liu, Chunping Hou, Bangbang Ge, Zhipeng Wang, Cheng Peng. Image Anomaly Detection Algorithm Based on Discrete-Continuous Feature Coupling[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0815009 Copy Citation Text show less
    References

    [1] Ma R Q, Liao N F, Keizo S. Detection and classification of color deficiency before vision experiment[J]. Acta Optica Sinica, 36, 0633001(2016).

    [2] Huang S, Li F F, Chen Q. Computed tomography image classification algorithm based on improved deep residual network[J]. Acta Optica Sinica, 40, 0310002(2020).

    [3] Yin S B, Ren Y J, Liu T et al. Review on application of machine vision in modern automobile manufacturing[J]. Acta Optica Sinica, 38, 0815001(2018).

    [4] Zhao C H, You W, Qi B et al. Real-time anomaly detection algorithm for hyperspectral remote sensing by using recursive polynomial kernel function[J]. Acta Optica Sinica, 36, 0228002(2016).

    [5] Li X F, Wang S Q, Weng X et al. Remote sensing of floating macroalgae blooms in the East China sea based on UNet deep learning model[J]. Acta Optica Sinica, 41, 0201002(2021).

    [6] Yao H B, Bian J W, Cong J W et al. Medical image segmentation model based on local sparse shape representation[J]. Laser & Optoelectronics Progress, 55, 051011(2018).

    [7] Wu Q, Zhang R. Wavelet denoising of near-earth all-day star map based on local outlier factor[J]. Acta Optica Sinica, 40, 0810001(2020).

    [8] Ju H H, Liu Z G, Wang Y. Hyperspectral anomaly detection algorithm based on combination of spectral and spatial information[J]. Laser & Optoelectronics Progress, 55, 122801(2018).

    [9] Zhang X H, Hao R F, Li T Y. Hyperspectral abnormal target detection based on low rank and sparse matrix decomposition-sparse representation[J]. Laser & Optoelectronics Progress, 56, 042801(2019).

    [10] Zhou P P, Ding Q H, Luo H B et al. Anomaly detection and location in crowded surveillance videos[J]. Acta Optica Sinica, 38, 0815007(2018).

    [11] Li W T, Fu H, Hao Z et al. Detection algorithm of crowd abnormal event based on Girvan-Newman splitting[J]. Laser & Optoelectronics Progress, 57, 061506(2020).

    [12] Wei Y M, Quan J C, Hou Y. Aerial image location of unmanned aerial vehicle based on YOLO v2[J]. Laser & Optoelectronics Progress, 54, 111002(2017).

    [13] Ionescu R T, Khan F S, Georgescu M I et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C], 7834-7843(2019).

    [14] Baur C, Wiestler B, Albarqouni S et al[M]. Deep autoencoding models for unsupervised anomaly segmentation in brain MR images Crimi A, Bakas S, Kuijf H, et al, 11383, 161-169(2019).

    [15] Zhou C, Paffenroth R C. Anomaly detection with robust deep autoencoders[C], 665-674(2017).

    [16] Akcay S, Atapour-Abarghouei A, Breckon T P. GANomaly: semi-supervised anomaly detection via adversarial training[M]. Jawahar C V, Li H D, Mori G, et al. Computer vision-ACCV 2018. Lecture notes in computer science, 11363, 622-637(2019).

    [17] Akçay S, Atapour-Abarghouei A, Breckon T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C], 1-8(2019).

    [18] Gong D, Liu L Q, Le V et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C], 1705-1714(2019).

    [19] Park H, Noh J, Ham B. Learning memory-guided normality for anomaly detection[C], 14360-14369(2020).

    [20] Chen Y R, Zhang H, Wang Y N et al. MAMA net: multi-scale attention memory autoencoder network for anomaly detection[J]. IEEE Transactions on Medical Imaging, 40, 1032-1041(2021).

    [21] Dai B, Guo R, Kumar S et al. Stochastic generative hashing[C], 913-922(2017).

    [22] Bergmann P, Fauser M, Sattlegger D et al. MVTec AD: a comprehensive real-world dataset for unsupervised anomaly detection[C], 9584-9592(2019).

    [23] Sabokrou M, Pourreza M, Fayyaz M et al. AVID: adversarial visual irregularity detection[M]. Jawahar C V, Li H D, Mori G, et al. Computer vision-ACCV 2018, 11366, 488-505(2019).

    [24] Bergmann P, Löwe S, Fauser M et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C], 372-380(2019).

    [25] Schlegl T, Seeböck P, Waldstein S M et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[M]. Niethammer M, Styner M, Aylward S, et al. Information processing in medical imaging. Lecture notes in computer science, 10265, 146-157(2017).

    [26] Ruff L, Vandermeulen R, Goernitz N et al. Deep one-class classification[C], 4393-4402(2018).

    [27] Dehaene D, Frigo O, Combrexelle S et al. Iterative energy-based projection on a normal data manifold for anomaly localization[C](2020).

    [28] Golan I, El-Yaniv R. Deep anomaly detection using geometric transformations[EB/OL]. https://arxiv.org/abs/1805.10917

    [29] Huang C Q, Ye F, Cao J K. Attribute restoration framework for anomaly detection[EB/OL]. https://arxiv.org/abs/1911.10676

    Yang Liu, Chunping Hou, Bangbang Ge, Zhipeng Wang, Cheng Peng. Image Anomaly Detection Algorithm Based on Discrete-Continuous Feature Coupling[J]. Laser & Optoelectronics Progress, 2022, 59(8): 0815009
    Download Citation