[1] N J Short, A J Yuffa, G W Videen, et al. Effects of surface materials on polarimetric-thermal measurements: applications to face recognition. Applied Optics, 55, 5226-5233(2016).
[2] K P Gurton, A J Yuffa, G W Videen. Enhanced facial recognition for thermal imagery using polarimetric imaging. Optics Letters, 39, 3857-3859(2014).
[3] Y Wang, C Yang, Y Wang, et al. Gigabit polarization division multiplexing in visible light communication. Optics Letters, 39, 1823-1826(2014).
[4] S Gaiarin, A Perego, E Silva, et al. Dual-polarization nonlinear Fourier transform-based optical communication system. Optica, 5, 263-270(2018).
[5] C He, H He, J Chang, et al. Polarisation optics for biomedical and clinical applications: a review. Light: Science & Applications, 10, 194(2021).
[6] Y Liu, H He, J Wu. Differentiation of human GBM from non-gbm brain tissue with polarization imaging technique. Frontiers in Oncology, 12, 863682(2022).
[7] M Kim, D Keller, C Bustamante. Differential polarization imaging. I. Theory. Biophysical Journal, 52, 911-927(1987).
[8] M P Rowe, E N Pugh, J S Tyo, et al. Polarization-difference imaging a biologically inspired technique for observation through scattering media. Optics Letters, 20, 608-610(1995).
[9] Weili Chen, Xia Wang, Weiqi Jin, . Experiment of target detection based on medium infrared polarization imaging. Infrared and Laser Engineering, 40, 7-11(2011).
[10] F Yang, H Wei. Fusion of infrared polarization and intensity images using support value transform and fuzzy combination rules. Infrared Physics & Technology, 60, 235-243(2013).
[11] H Hu, L Zhao, X Li, et al. Polarimetric image recovery in turbid media employing circularly polarized light. Optics Express, 26, 25047-25059(2018).
[12] F Liu, Y Wei, P Han, et al. Polarization-based exploration for clear underwater vision in natural illumination. Optics Express, 27, 3629-3641(2019).
[13] F Liu, L Cao, X Shao, et al. Polarimetric dehazing utilizing spatial frequency segregation of images. Applied Optics, 54, 8116-8122(2015).
[14] Y Qu, Z Zou. Non-sky polarization-based dehazing algorithm for non-specular objects using polarization difference and global scene feature. Optics Express, 25, 25004-25022(2017).
[15] R T Frankot, R Chellappa. A method for enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10, 439-451(1988).
[16] Q Zhao, Z H Li, J H Yang. 3D surface reconstruction base on relaxation method. Journal of Changchun University of Science and Technology (Natural Science Edition), 31, 7-10(2008).
[17] Kovesi P. Shapelets crelated with surface nmals produce surfaces[C]10th IEEE International Conference on Computer Vision (ICCV 2005), 2005: 9941001.
[18] G A Atkinson, E R Hancock. Atkinson E R H. Recovery of surface orientation from diffuse polarization. IEEE Transactions on Image Processing, 15, 1653-1664(2006).
[19] Peterson J Q, Jensena G L, Kristib J A, et al. Polarimetric imaging using a continuously spinning polarizer element[C] Polarization Analysis, Measurement, Remote Sensing III, 2000, 4133: 292300.
[20] Bigué L, Cheney N. Highspeed ptable polarimeter using a ferroelectric liquid crystal modulat[C]Conference on Polarization Science Remote Sensing III, 2007, 6682: 668205.
[21] Gendre L, Foulonneau A, Bigué L. Stokes imaging polarimetry using a single ferroelectric liquid crystal modulat[C]Proceedings of SPIE, 2010, 7672: 76720B.
[22] R M A Azzam. Division-of-amplitude Photopolarimeter (DOAP) for the simultaneous measurement of all four stokes parameters of light. Optica Acta:International Journal of Optics, 29, 685-689(1982).
[23] Phenis A M, Virgen M, Leon E E. Achromatic instantaneous Stokes imaging polarimeter[C]Novel Optical Systems Design Optimization VIII, 2005, 5875: 587502.
[24] Mudge J, Virgen M, Dean P. Nearinfrared simultaneous Stokes imaging polarimeter[C]Conference on Polarization Science Remote Sensing IV, 2009, 7461: 74610L.
[25] Mudge J, Virgen M. Nearinfrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, instrument err estimation[C]Conference on Polarization Science Remote Sensing V, 2011, 8160: 81600B.
[26] Y Wang, X Hu, J Lian, et al. Geometric calibration algorithm of polarization camera using planar patterns. Journal of Shanghai Jiaotong University (Science), 22, 55-59(2017).
[27] Pezzaniti J L, Chenault D B. A division of aperture MWIR imaging polarimeter[C]Polarization Science Remote Sensing II, 2005, 5888: 58880V.
[28] X Liu, S Zhai, J Li, et al. Design of cooled medium-wave infrared polarization imaging optical system. Infrared and Laser Engineering, 50, 20200208(2021).
[29] H Luo, J Zhang, X Gai, et al. Development status and prospects of polarization imaging technology (Invited). Infrared and Laser Engineering, 51, 20210987(2022).
[30] Haibo Luo, Yande Liu, Lejia Lan, . Key technologies of polarization lmaging for division of focalplane polarimeters. Journal of East China Jiaotong University, 34, 8-13(2017).
[31] G P Nordin, J T Meier, P C Deguzman, et al. Micropolarizer array for infrared imaging polarimetry. Journal of the Optical Society of America A-Optics Image Science and Vision, 16, 1168-1174(1999).
[32] R Perkins, V Gruev. Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters. Optics Express, 18, 25815-25824(2010).
[33] X Zhao, A Bermak, F Boussaid, et al. Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum. Optics Express, 18, 17776-17787(2010).
[34] Rebhan D, Rosenberger M, Notni G. Principle investigations on polarization image senss[C]Photonics Education in Measurement Science 2019, 11144: 111440A.
[35] J S Tyo, M P Rowe, EN Pugh, et al. Target detection in optically scattering media by polarization-difference imaging. Applied Optics, 35, 1855-1870(1996).
[36] T Treibitz, Y Y Schechner. Active polarization descattering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 385-399(2009).
[37] B Huang, T Liu, H Hu, et al. Underwater image recovery considering polarization effects of objects. Optics Express, 24, 9826-9838(2016).
[38] J Wang, M Wan, G Gu, et al. Periodic integration-based polarization differential imaging for underwater image restoration. Optics and Lasers in Engineering, 149, 106785(2022).
[39] Schechner YY, Narasimhan S G, Nayar S K. Instant dehazing of images using polarization[C]Conference on Computer Vision Pattern Recognition, 2001: 325332.
[40] Y Y Schechner, S G Narasimhan, S K Nayar. Polarization-based vision through haze. Applied Optics, 42, 511-525(2003).
[41] S Fang, X Xia, X Huo, et al. Image dehazing using polarization effects of objects and airlight. Optics Express, 22, 19523-19537(2014).
[42] Cao L, Shao X, Liu F, et al. Dehazing method through polarimetric imaging multiscale analysis[C]Conference on Satellite Data Compression, Communications, Processing XI, 2015, 9501: 950111.
[43] Lavigne D A, Breton M. A new fusion algithm f shadow peration using visible wave infrared polarimetric images[C]2010 13th International Conference on Infmation Fusion, 2010:17.
[44] Zhou P, Wang F, Zhang H, et al. Camouflaged target detection based on visible near infrared polarimetric imagery fusion[C]International Symposium on Photoelectronic Detection Imaging 2011: Advances in Imaging Detects Applications, 2011, 8194: 81940Y.
[45] Liu Z, Zeng H, Wang H, et al. Visible polarization image fusion with nonsubsampled Shearlets[C]International Conference on Frontiers in Optical Imaging Technology Applications, 2015, 9795: 97951S
[46] J Liang, W Zhang, L Ren, et al. Polarimetric dehazing method for visibility improvement based on visible and infrared image fusion. Applied Optics, 55, 8221-8226(2016).
[47] X Yan, H Qin, J Li, et al. Infrared and visible image fusion using multiscale directional nonlocal means filter. Applied Optics, 54, 4299-4308(2015).
[48] J Zhang, J Shao, J Chen, et al. Polarization image fusion with self-learned fusion strategy. Pattern Recognition, 118, 108045(2021).
[49] J Zhang, X Zhang, T Li, et al. Visible light polarization image desmogging via cycle convolutional neural network. Multimedia Systems, 28, 45-55(2021).
[50] H Shen, Z Zheng. Real-time highlight removal using intensity ratio. Applied Optics, 52, 4483-4493(2013).
[51] L B Wolff, T E Boult. Constraining object features using a polarization reflectance model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 635-657(1991).
[52] Miyazak D, Kagesawa M, Ikeuchi K. Determining shapes of transparent objects from two polarization images[C]Proceedings of the IAPR Conference on Machine Vision Applications (IAPR MVA 2002), 2002: 2631.
[53] D Miyazaki, M Saito, Y Sato, et al. Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths. Journal of the Optical Society of America A-Optics Image Science and Vision, 19, 687-694(2002).
[54] C Stolz, M Ferraton, F Meriaudeau. Shape from polarization a method for solving zenithal angle ambiguity. Optics Letters, 37, 4218-4220(2012).
[55] N M Garcia, I d Erausquin, C Edmiston, et al. Surface normal reconstruction using circularly polarized light. Optics Express, 23, 14391-14406(2015).
[56] O Morel, C Stolz, F Meriaudeau, et al. Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging. Applied Optics, 45, 4062-4068(2006).
[57] D Miyazaki, T Shigetomi, M Baba, et al. Surface normal estimation of black specular objects from multiview polarization images. Optical Engineering, 56, 1-17(2017).
[58] Gary A. Atkinson E R H. Surface reconstruction using polarization photometric stereo[C]12th International Conference on Computer Analysis of Images Patterns, 2007, 4673(58): 466473.
[59] Kadambi A, Taamazyan V, Shi B, et al. Depth sensing using geometrically constrained polarization nmals[C]IEEE International Conference on Computer Vision (ICCV), 2017. 125(13): 3451.
[60] J Yang, L Yan, H Zhao, . Shape from polarization of low-texture objects with rough depth information. J Infrared Millim Waves, 38, 819-827(2019).
[61] X Ping, Y Liu, X Dong, . 3-D reconstruction of textureless and high-reflective target by polarization and binocular stereo vision. J Infrared Millim Waves, 36, 432-438(2017).
[62] Zhu D, Smith W A P. Depth from a polarisation + RGB stereo pair[C]IEEECVF Conference on Computer Vision Pattern Recognition (CVPR), 2019: 75697578.
[63] R Zhang, B Shi, J Yang, . Polarimetric multi-view 3D reconstruction based on parallax angle and zenith angle optimization. J Infrared Millim Waves, 40, 133-142(2021).
[64] X Tian, R Liu, Z Wang, et al. High quality 3D reconstruction based on fusion of polarization imaging and binocular stereo vision. Information Fusion, 77, 19-28(2022).
[65] X Huang, J Bai, K Wang, et al. Target enhanced 3D reconstruction based on polarization-coded structured light. Optics Express, 25, 1173-1184(2017).
[66] X Li, F Liu, X Shao. Near-infrared monocular 3D computational polarization imaging of surfaces exhibiting nonuniform reflectance. Optics Express, 29, 15616-15630(2021).
[67] L Leilei, H Haixia, G Yang, . 3D reconstruction method of target based on infrared radiation polarization imaging. J Infrared Millim Waves, 40, 413-419(2021).
[68] Mahmoud A H, ElMelegy M T, Farag A A. Direct method f shape recovery from polarization shading[C]19th IEEE International Conference on Image Processing (ICIP), 2012: 17691772.
[69] Smith WAP, Ramamothi R, Tozza S. Linear depth estimation from an uncalibrated, monocular polarisation image[C]14th European Conference on Computer Vision (ECCV), 2016, 9912: 109125.
[70] W A P Smith, R Ramamoorthi, S Tozza. Height-from-polarisation with unknown lighting or albedo. IEEE Trans Pattern Anal Mach Intell, 41, 2875-2888(2019).
[71] P Han, Y Cai, F Liu, et al. Computational polarization 3D: New solution for monocular shape recovery in natural conditions. Optics and Lasers in Engineering, 151, 106925(2022).
[72] Ba Y, Gilbert A, Wang F, et al. Deep shape from polarization[C]ECCV 2020: Computer Vision – ECCV 2020, 2020, 12369: 554571.
[73] P Han, X Li, F Liu, et al. Accurate passive 3D polarization face reconstruction under complex conditions assisted with deep learning. Photonics, 9, 1-12(2022).
[74] F Ding, Y Chen, S I Bozhevolnyi. Metasurface-based polarimeters. Applied Sciences, 8, 594(2018).
[75] Y B Ni, S Wen, Z C Shen, . Multidimensional light field sensing based on metasurfaces. Chinese Journal of Lasers, 48, 1918003(2021).
[76] P C Wu, J W Chen, C W Yin, et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics, 5, 2568-2573(2018).
[77] A Basiri, X Chen, J Bai, et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light: Science & Applications, 8, 78(2019).
[78] L Li, J Wang, L Kang, et al. Monolithic full-stokes near-infrared polarimetry with chiral plasmonic metasurface integrated graphene-silicon photodetector. ACS Nano, 14, 16634-16642(2020).
[79] C Zhang, J Hu, Y Dong, et al. High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection. Photonics Research, 9, 583-589(2021).
[80] X Sun, R Ma, X Pu, et al. High-efficiency polarization multiplexing metalenses. Nanomaterials (Basel), 12, 1-9(2022).
[81] E Arbabi, S M Kamali, A Arbabi, et al. Full-stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132-3140(2018).
[82] N A Rubin, G D'Aversa, P Chevalier, et al. Matrix fourier optics enables a compact full-stokes polarization camera. Science, 365(6448), 1-8(2019).
[83] N A Rubin, P Chevalier, M Juhl, et al. Imaging polarimetry through metasurface polarization gratings. Optics Express, 30, 9389-9412(2022).
[84] B Cheng, Y Zou, H Shao, et al. Full-Stokes imaging polarimetry based on a metallic metasurface. Optics Express, 28, 27324-27336(2020).