• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011032 (2021)
Chang Li, Chao Gao, Jiaqi Shao, Xiaoqian Wang*, and Zhihai Yao**
Author Affiliations
  • College of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP202158.1011032 Cite this Article Set citation alerts
    Chang Li, Chao Gao, Jiaqi Shao, Xiaoqian Wang, Zhihai Yao. Hadamard Ghost Imaging Based on Compressed Sensing Reconstruction Algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011032 Copy Citation Text show less
    References

    [1] Klyshko D N. Combine EPR and two-slit experiments: interference of advanced waves[J]. Physics Letters A, 132, 299-304(1988). http://www.sciencedirect.com/science/article/pii/0375960188908560

    [2] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [3] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [4] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 79, 053840(2009). http://arxiv.org/abs/0812.2633

    [5] Jin H Q, Shi J H, Peng J Y et al. Looking around corners and through turbid media with projector[J]. Acta Optica Sinica, 34, 0511006(2014).

    [6] Tang W Z, Cao Z W, Shi J H et al. Back-side correlation imaging with digital micro mirror[J]. Acta Optica Sinica, 35, 0511004(2015).

    [7] Tao Y, Wang X X, Yan G Q et al. Computational ghost imaging method based on Tikhonov regularization[J]. Laser & Optoelectronics Progress, 57, 021016(2020).

    [8] Zhang L H, Yuan X, Zhang D W. Research on ghost imaging based on laser projector and Hadamard matrix in classroom[J]. Applied Laser, 38, 879-883(2018).

    [9] Wang L, Zhao S M. Fast reconstructed and high-quality ghost imaging with fast Walsh-Hadamard transform[J]. Photonics Research, 4, 240-244(2016). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201606005.htm

    [10] Li Y, Chen H X, Sang A J et al. Four-dimensional matrix Walsh transform for lossless compression of color video[J]. The Journal of China Universities of Posts and Telecommunications, 17, 123-128(2010).

    [11] Zhou C, Huang H Y, Liu B et al. Hybrid speckle-pattern compressive computational ghost imaging[J]. Acta Optica Sinica, 36, 0911001(2016).

    [12] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017). http://europepmc.org/articles/PMC5471277/

    [13] Yu W K. Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort[J]. Sensors, 19, 4122(2019). http://www.ncbi.nlm.nih.gov/pubmed/31548513

    [14] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [15] Candès E J, Wakin M B. A introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [16] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).

    [17] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 52, 489-509(2006).

    [18] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 53, 4655-4666(2007). http://ieeexplore.ieee.org/document/4385788

    [19] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 55, 2230-2249(2009).

    [20] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [21] Zhao C Q, Gong W L, Chen M L et al. Ghost imaging lidar via sparsity constraints[J]. Applied Physics Letters, 101, 141123(2012). http://scitation.aip.org/content/aip/journal/apl/101/14/10.1063/1.4757874

    [22] Lu M H, Shen X, Han S S. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 31, 0711002(2011).

    [23] Feng W, Zhao X D, Tang S J et al. Compressive computational ghost imaging method based on region segmentation[J]. Laser & Optoelectronics Progress, 57, 101105(2020).

    [24] Yan G Q, Yang F B, Wang X X et al. Computational ghost imaging based on orthogonal sinusoidal speckle[J]. Laser & Optoelectronics Progress, 57, 041019(2020).

    [25] Romberg J. Imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 14-20(2008).

    [26] Candès E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathematique, 346, 589-592(2008).

    [27] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    Chang Li, Chao Gao, Jiaqi Shao, Xiaoqian Wang, Zhihai Yao. Hadamard Ghost Imaging Based on Compressed Sensing Reconstruction Algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011032
    Download Citation