• Journal of Innovative Optical Health Sciences
  • Vol. 15, Issue 1, 2230002 (2022)
[in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, and [in Chinese]1、2、*
Author Affiliations
  • 1Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
  • 2MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
  • show less
    DOI: 10.1142/s1793545822300026 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2230002 Copy Citation Text show less
    References

    [1] L. Stapley, "The history of diabetes mellitus," Trends Endocrinol. Metab. 12, 277 (2001).

    [2] NCD Risk Factor Collab. (NCD-RisC), "Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants," Lancet 387, 1513–1530 (2016).

    [3] T. Tuomi, N. Santoro, S. Caprio, M. Cai, J. Weng, L. Groop, "The many faces of diabetes: a disease with increasing heterogeneity," Lancet 383, 1084–1094 (2014).

    [4] T. H. Lipman, L. E. Levitt Katz, S. J. Ratcliffe, K. M. Murphy, A. Aguilar, I. Rezvani, C. J. Howe, S. Fadia, E. Suarez, "Increasing incidence of type 1 diabetes in youth: twenty years of the Philadelphia Pediatric Diabetes Registry," Diabetes Care 36, 1597–1603 (2013).

    [5] J. M. Forbes, A. K. Fotheringham, "Vascular complications in diabetes: Old messages, new thoughts," Diabetologia 60, 2129–2138 (2017).

    [6] N. M. Bornstein, M. Brainin, A. Guekht, I. Skoog, A. D. Korczyn, "Diabetes and the brain: issues and unmet needs," Neurol. Sci. 35, 995–1001 (2014).

    [7] A. Ergul, A. Kelly-Cobbs, M. Abdalla, S. C. Fagan, "Cerebrovascular complications of diabetes: Focus on stroke," Endocr. Metab. Immune Disord. Drug Targets 12, 148–158 (2012).

    [8] C. Funnell, M. M. Doyle-Waters, S. Yip, T. Field, "What is the relationship between type 2 diabetes mellitus status and the neuroradiological correlates of cerebral small vessel disease in adults? Protocol for a systematic review," Syst. Rev. 6, 7 (2017).

    [9] T. Umemura, T. Kawamura, N. Hotta, "Pathogenesis and neuroimaging of cerebral large and small vessel disease in type 2 diabetes: A possible link between cerebral and retinal microvascular abnormalities," J. Diabetes Investig. 8, 134–148 (2017).

    [10] Y. Zheng, S. H. Ley, F. B. Hu, "Global aetiology and epidemiology of type 2 diabetes mellitus and its complications," Nat. Rev. Endocrinol. 14, 88–98 (2018).

    [11] S. Tehrani, K. Bergen, L. Azizi, G. Jorneskog, "Skin microvascular reactivity correlates to clinical microangiopathy in type 1 diabetes: A pilot study," Diab. Vasc. Dis. Res. 17, 1479164120928303 (2020).

    [12] D. S. W. Ting, G. C. M. Cheung, T. Y. Wong, "Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review," Clin. Exp. Ophthalmol. 44, 260–277 (2016).

    [13] R. Z. Alicic, M. T. Rooney, K. R. Tuttle, "Diabetic kidney disease: Challenges, progress, and possibilities," Clin. J. Am. Soc. Nephrol. 12, 2032–2045 (2017).

    [14] T. Hardigan, R. Ward, A. Ergul, "Cerebrovascular complications of diabetes: focus on cognitive dysfunction," Clin. Sci. (Lond.) 130, 1807–1822 (2016).

    [15] S. P. M. Hosking, R. Bhatia, P. A. Crock, I. Wright, M. L. Squance, G. Reeves, "Non-invasive detection of microvascular changes in a paediatric and adolescent population with type 1 diabetes: a pilot cross-sectional study," BMC Endocr. Disord. 13, 41 (2013).

    [16] A. Krumholz, L. D. Wang, J. J. Yao, L. H. V. Wang, "Functional photoacoustic microscopy of diabetic vasculature," J. Biomed. Opt. 17, 060502 (2012).

    [17] A. D. Jonas, A. Daures, M. Cazalas, J.-L. Perrot, A. Dubois, "Line-field confocal optical coherence tomography for three-dimensional skin imaging," Front. Optoelectron. 13, 381–392 (2020).

    [18] M. V. Novoselova, T. O. Abakumova, B. N. Khlebtsov, T. S. Zatsepin, E. N. Lazareva, V. V. Tuchin, V. P. Zharov, D. A. Gorin, E. I. Galanzha, "Optical clearing for photoacoustic lympho- and angiography beyond conventional depth limit in vivo," Photoacoustics 20, 100186 (2020).

    [19] H. U. Dodt, U. Leischner, A. Schierloh, N. Jahrling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgansberger, K. Becker, "Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain," Nat. Methods 4, 331–336 (2007).

    [20] A. Dastiridou, V. Chopra, "Potential applications of optical coherence tomography angiography in glaucoma," Curr. Opin. Ophthalmol. 29, 226–233 (2018).

    [21] D. V. Yakovlev, D. S. Farrakhova, A. A. Shiryaev, K.T. Efendiev, M. V. Loschenov, L.M. Amirkhanova, D. O. Kornev, V. V. Levkin, I. V. Reshetov, V. B. Loschenov, "New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods," Front. Optoelectron. 13, 352–359 (2020).

    [22] F. Xing, J. H. Lee, C. Polucha, J. Lee, "Threedimensional imaging of spatio-temporal dynamics of small blood capillary network in the cortex based on optical coherence tomography: A review," J. Innov. Opt. Health Sci. 13, 2030002 (2019).

    [23] E. Zharkikh, V. Dremin, E. Zherebtsov, A. Dunaev, I. Meglinski, "Biophotonics methods for functional monitoring of complications of diabetes mellitus," J. Biophotonics 13, e202000203 (2020).

    [24] V. V. Tuchin, Handbook of Optical Biomedical Diagnostics: Volume 2: Methods, 2nd Edition, SPIE Press, Bellingham, WA, USA (2016).

    [25] P. O. Bayguinov, D. M. Oakley, C.-C. Shih, D. J. Geanon, M. S. Joens, J. A. J. Fitzpatrick, "Modern laser scanning confocal microscopy," Curr. Protoc. Cytom. 85, e39 (2018).

    [26] J. Li, M. N. Wilson, A. J. Bower, M. Marjanovic, E. J. Chaney, R. Barkalifa, S. A. Boppart, "Videorate multimodal multiphoton imaging and threedimensional characterization of cellular dynamics in wounded skin," J. Innov. Opt. Health Sci. 13, 2050007 (2019).

    [27] M. Everett, S. Magazzeni, T. Schmoll, M. Kempe, "Optical coherence tomography: From technology to applications in ophthalmology," Transl. Biophotonics 3, e202000012 (2020).

    [28] Y. Ma, Y. Gao, Z. Li, A. Li, Y. Wang, J. Liu, Y. Yu, W. Shi, Z. Ma, "Automated retinal layer segmentation on optical coherence tomography image by combination of structure interpolation and lateral mean filtering," J. Innov. Opt. Health Sci. 14, 2140011 (2021).

    [29] E. C. Greig, J. S. Duker, N. K. Waheed, "A practical guide to optical coherence tomography angiography interpretation," Int. J. Retina Vitreous 6, 55 (2020).

    [30] A. C. S. Tan, G. S. Tan, A. K. Denniston, P. A. Keane, M. Ang, D. Milea, U. Chakravarthy, C. M. G. Cheung, "An overview of the clinical applications of optical coherence tomography angiography," Eye (Lond.) 32, 262–286 (2018).

    [31] T. E. de Carlo, A. Romano, N. K. Waheed, J. S. Duker, "A review of optical coherence tomography angiography (OCTA)," Int. J. Retina Vitreous 1, 5 (2015).

    [32] D. Li, Y. Zhang, B. Chen, "Improving sampling depth of laser speckle imaging by topical optical clearing: A theoretical and in vivo study," J. Innov. Opt. Health Sci. 13, 2050004 (2019).

    [33] X. Hu, J. Ou, M. Zhou, M. Hu, L. Sun, S. Qiu, Q. Li, J. Chu, "Spatial-spectral identification of abnormal leukocytes based on microscopic hyperspectral imaging technology," J. Innov. Opt. Health Sci. 13, 2050005 (2019).

    [34] T. Chakraborty, M. K. Driscoll, E. Jeffery, M. M. Murphy, P. Roudot, B. J. Chang, S. Vora, W. M. Wong, C. D. Nielson, H. Zhang, V. Zhemkov, C. Hiremath, E. D. De La Cruz, Y. Yi, I. Bezprozvanny, H. Zhao, R. Tomer, R. Heintzmann, J. P. Meeks, D. K. Marciano, S. J. Morrison, G. Danuser, K. M. Dean, R. Fiolka, "Light-sheet microscopy of cleared tissues with isotropic, subcellular resolution," Nat. Methods 16, 1109–1113 (2019).

    [35] H. Shi, Y. Guan, J. Chen, Q. Luo, "Optical imaging in brainsmatics," Photonics 6, 98 (2019).

    [36] Y. Dai, H. Zhou, Z. Chu, Q. Zhang, J. R. Chao, K. A. Rezaei, R. K. Wang, "Microvascular changes in the choriocapillaris of diabetic patients without retinopathy investigated by swept-source OCT angiography," Invest. Ophthalmol. Vis. Sci. 61, 50 (2020).

    [37] L. Kuehlewein, M. Bansal, T. L. Lenis, N. A. Iafe, S. R. Sadda, M. A. Bonini Filho, T. E. de Carlo, N. K. Waheed, J. S. Duker, D. Sarraf, "Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration," Am. J. Ophthalmol. 160, 739–748.e732 (2015).

    [38] J. D. Briers, "Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging," Physiol. Meas. 22, R35–R66 (2001).

    [39] A. J. Deegan, R. K. Wang, "Microvascular imaging of the skin," Phys. Med. Biol. 64, 07TR01 (2019).

    [40] A. Y. Sdobnov, M. E. Darvin, E. A. Genina, A. N. Bashkatov, J. Lademann, V. V. Tuchin, "Recent progress in tissue optical clearing for spectroscopic application," Spectrochim. Acta A, Mol. Biomol. Spectrosc. 197, 216–229 (2018).

    [41] R. Shi, M. Chen, V. V. Tuchin, D. Zhu, "Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing," Biomed. Opt. Express 6, 1977–1989 (2015).

    [42] T. Mano, A. Albanese, H. U. Dodt, A. Erturk, V. Gradinaru, J. B. Treweek, A. Miyawaki, K. Chung, H. R. Ueda, "Whole-brain analysis of cells and circuits by tissue clearing and light-sheet microscopy," J. Neurosci. 38, 9330–9337 (2018).

    [43] F. F. Voigt, D. Kirschenbaum, E. Platonova, S. Pages, R. A. A. Campbell, R. Kastli, M. Schaettin, L. Egolf, A. van der Bourg, P. Bethge, K. Haenraets, N. Frezel, T. Topilko, P. Perin, D. Hillier, S. Hildebrand, A. Schueth, A. Roebroeck, B. Roska, E. T. Stoeckli, R. Pizzala, N. Renier, H. U. Zeilhofer, T. Karayannis, U. Ziegler, L. Batti, A. Holtmaat, C. Lüscher, A. Aguzzi, F. Helmchen, "The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue," Nat. Methods 16, 1105–1108 (2019).

    [44] V. V. Tuchin, I. L. Maksimova, D. Zimnyakov, I. L. Kon, A. H. Mavlyutov, A. A. Mishin, "Light propagation in tissues with controlled optical properties," J. Biomed. Opt. 2, 401–417 (1997).

    [45] T. Yu, J. Zhu, D. Li, D. Zhu, "Physical and chemical mechanisms of tissue optical clearing," iScience 24, 102178 (2021).

    [46] I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, F. S. Pavone, "In-vivo and ex-vivo optical clearing methods for biological tissues: review," Biomed. Opt. Express 10, 5251–5267 (2019).

    [47] D. Zhu, K. V. Larin, Q. Luo, V. V. Tuchin, "Recent progress in tissue optical clearing," Laser Photon. Rev. 7, 732–757 (2013).

    [48] V. D. Genin, E. A. Genina, V. V. Tuchin, A. N. Bashkatov, "Glycerol effects on optical, weight and geometrical properties of skin tissue," J. Innov. Opt. Health Sci. (2021), doi: 10.1142/S1793545821420062.

    [49] X. Liang, H. Luo, "Optical tissue clearing: Illuminating brain function and dysfunction," Theranostics 11, 3035–3051 (2021).

    [50] A. Jaafar, M. H. Mahmood, R. Holomb, L. Himics, T. Vaczi, A. Y. Sdobnov, V. V. Tuchin, M. Veres, "Ex-vivo confocal Raman microspectroscopy of porcine skin with 633/785-NM laser excitation and optical clearing with glycerol/water/DMSO solution," J. Innov. Opt. Health Sci. (2021), doi: 10.1142/S1793545821420037.

    [51] T. Pietzsch, S. Saalfeld, S. Preibisch, P. Tomancak, "BigDataViewer: Visualization and processing for large image data sets," Nat. Methods 12, 481–483 (2015).

    [52] H. Peng, Z. Ruan, F. Long, J. H. Simpson, E. W. Myers, "V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets," Nat. Biotechnol. 28, 348–353 (2010).

    [53] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, "Fiji: an open-source platform for biological-image analysis," Nat. Methods 9, 676–682 (2012).

    [54] G. S. Handelman, H. K. Kok, R. V. Chandra, A. H. Razavi, M. J. Lee, H. Asadi, "eDoctor: machine learning and the future of medicine," J. Intern. Med. 284, 603–619 (2018).

    [55] H.-P. Hammes, J. Lin, O. Renner, M. Shani, A. Lundqvist, C. Betsholtz, M. Brownlee, U. Deutsch, "Pericytes and the pathogenesis of diabetic retinopathy," Diabetes 51, 3107–3112 (2002).

    [56] M. Mizutani, T. S. Kern, M. Lorenzi, "Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy," J. Clin. Invest. 97, 2883–2890 (1996).

    [57] C. Schaefer, T. Biermann, M. Schroeder, I. Fuhrhop, A. Niemeier, W. Ruther, P. Algenstaedt, N. Hansen- Algenstaedt, "Early microvascular complications of prediabetes in mice with impaired glucose tolerance and dyslipidemia," Acta Diabetol. 47, S19–S27 (2010).

    [58] M. Sorelli, P. Francia, L. Bocchi, A. De Bellis, and R. Anichini, "Assessment of cutaneous microcirculation by laser Doppler flowmetry in type 1 diabetes," Microvasc. Res. 124, 91–96 (2019).

    [59] C. Lal, S. N. Unni, "Correlation analysis of laser Doppler flowmetry signals: a potential non-invasive tool to assess microcirculatory changes in diabetes mellitus," Med. Biol. Eng. Comput. 53, 557–566 (2015).

    [60] A. Adamska, S. Pilacinski, D. Zozulinska-Ziolkiewicz, A. Gandecka, A. Grzelka, A. Konwerska, A. Malinska, M. Nowicki, A. Araszkiewicz, "Disturbances in angiogenesis and vascular maturation in the skin are associated with diabetic kidney disease in type 1 diabetes," Clin. Diabetol. 8, 231–237 (2019).

    [61] Y.-K. Jan, S. Shen, R. D. Foreman, W. J. Ennis, "Skin blood flow response to locally applied mechanical and thermal stresses in the diabetic foot," Microvasc. Res. 89, 40–46 (2013).

    [62] R. Argarini, R. A. Mclaughlin, S. Z. Joseph, L. H. Naylor, D. J. Green, "Optical coherence tomography: a novel imaging approach to visualize and quantify cutaneous microvascular structure and function in patients with diabetes," BMJ Open Diabetes Res. Care 8, e001479 (2020).

    [63] W. Feng, R. Shi, C. Zhang, S. Liu, T. Yu, D. Zhu, "Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method," J. Biomed. Opt. 24, 031003 (2018).

    [64] D. Zhu, J. Wang, Z. W. Zhi, X. Wen, Q. M. Luo, "Imaging dermal blood flow through the intact rat skin with an optical clearing method," J. Biomed. Opt. 15, 026008 (2010).

    [65] J. Wang, R. Shi, D. Zhu, "Switchable skin window induced by optical clearing method for dermal blood flow imaging," J. Biomed. Opt. 18, 061209 (2013).

    [66] W. Feng, S. Liu, C. Zhang, Q. Xia, T. Yu, Z. Dan, "Comparison of cerebral and cutaneous microvascular dysfunction with the development of type 1 diabetes," Theranostics 9, 5854–5868 (2019).

    [67] W. Feng, C. Zhang, T. Yu, D. Zhu, "Quantitative evaluation of skin disorders in type 1 diabetic mice by in vivo optical imaging," Biomed. Opt. Express 10, 2996–3008 (2019).

    [68] N. Cheung, P. Mitchell, T. Y. Wong, "Diabetic retinopathy," Lancet 376, 124–136 (2010).

    [69] R. Mastropasqua, L. Toto, A. Mastropasqua, R. Aloia, C. De Nicola, P. A. Mattei, G. Di Marzio, M. Di Nicola, L. Di Antonio, "Foveal avascular zone area and parafoveal vessel density measurements in different stages of diabetic retinopathy by optical coherence tomography angiography," Int. J. Ophthalmol. 10, 1545–1551 (2017).

    [70] G. H. Bresnick, R. Condit, S. Syrjala, M. Palta, A. Groo, K. Korth, "Abnormalities of the foveal avascular zone in diabetic retinopathy," Arch. Ophthalmol. 102, 1286–1293 (1984).

    [71] K. R. Mendis, C. Balaratnasingam, P. Yu, C. J. Barry, I. L. McAllister, S. J. Cringle, D. Y. Yu, "Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail," Invest. Ophthalmol. Vis. Sci. 51, 5864–5869 (2010).

    [72] D. A. Salz, T. E. de Carlo, M. Adhi, E. Moult, W. Choi, C. R. Baumal, A. J. Witkin, J. S. Duker, J. G. Fujimoto, N. K. Waheed, "Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes," JAMA Ophthalmol. 134, 644–650 (2016).

    [73] M. Soares, C. Neves, I. P. Marques, I. Pires, C. Schwartz, M. Costa, T. Santos, M. Durbin, J. Cunha-Vaz, "Comparison of diabetic retinopathy classification using fluorescein angiography and optical coherence tomography angiography," Br. J. Ophthalmol. 101, 62–68 (2017).

    [74] W. Choi, N. K. Waheed, E. M. Moult, M. Adhi, B. Lee, T. de Carlo, V. Jayaraman, C. R. Baumal, J. S. Duker, J. G. Fujimoto, "Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy," Retina 37, 11–21 (2017).

    [75] M. D. Davis, M. R. Fisher, R. E. Gangnon, F. Barton, L. M. Aiello, E. Y. Chew, F. L. Ferris, 3rd, G. L. Knatterud, "Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18," Invest. Ophthalmol. Vis. Sci. 39, 233–252 (1998).

    [76] H. Akil, S. Karst, M. Heisler, M. Etminan, E. Navajas, D. Maberley, "Application of optical coherence tomography angiography in diabetic retinopathy: A comprehensive review," Can. J. Ophthalmol. 54, 519–528 (2019).

    [77] D. Gildea, "The diagnostic value of optical coherence tomography angiography in diabetic retinopathy: A systematic review," Int. Ophthalmol. 39, 2413–2433 (2019).

    [78] K. Sambhav, K. K. Abu-Amero, K. V. Chalam, "Deep capillary macular perfusion indices obtained with OCT angiography correlate with degree of nonproliferative diabetic retinopathy," Eur. J. Ophthalmol. 27, 716–729 (2017).

    [79] P. L. Nesper, P. K. Roberts, A. C. Onishi, H. Chai, L. Liu, L. M. Jampol, A. A. Fawzi, "Quantifying microvascular abnormalities with increasing severity of diabetic retinopathy using optical coherence tomography angiography," Invest. Ophthalmol. Vis. Sci. 58, BIO307–BIO315 (2017).

    [80] W. A. Banks, "The blood-brain barrier interface in diabetes mellitus: Dysfunctions, mechanisms and approaches to treatment," Curr. Pharm. Des. 26, 1438–1447 (2020).

    [81] G. J. Biessels, F. Nobili, C. E. Teunissen, R. Simo, P. Scheltens, "Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective," Lancet Neurol. 19, 699–710 (2020).

    [82] M. Bogush, N. A. Heldt, Y. Persidsky, "Blood brain barrier injury in diabetes: Unrecognized effects on brain and cognition," J. Neuroimmune Pharmacol. 12, 593–601 (2017).

    [83] W. Li, R. Prakash, A. I. Kelly-Cobbs, S. Ogbi, A. Kozak, A. B. El-Remessy, D. A. Schreihofer, S. C. Fagan, A. Ergul, "Adaptive cerebral neovascularization in a model of type 2 diabetes: relevance to focal cerebral ischemia," Diabetes 59, 228–235 (2010).

    [84] S. Ma, J. Wang, Y. Wang, X. Dai, F. Xu, X. Gao, J. Johnson, N. Xu, R. K. Leak, X. Hu, Y. Luo, J. Chen, "Diabetes mellitus impairs white matter repair and long-term functional deficits after cerebral ischemia," Stroke 49, 2453–2463 (2018).

    [85] S. P. Rensma, T. T. van Sloten, J. Ding, S. Sigurdsson, C. D. A. Stehouwer, V. Gudnason, L. J. Launer, "Type 2 diabetes, change in depressive symptoms over time, and cerebral small vessel disease: Longitudinal data of the AGES-Reykjavik study," Diabetes Care 43, 1781–1787 (2020).

    [86] T. T. van Sloten, S. Sedaghat, M. R. Carnethon, L. J. Launer, C. D. A. Stehouwer, "Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression," Lancet Diabetes Endocrinol. 8, 325–336 (2020).

    [87] A. I. Kelly-Cobbs, A. K. Harris, M. M. Elgebaly, W. G. Li, K. Sachidanandam, V. Portik-Dobos, M. Johnson, A. Ergul, "Endothelial endothelin B receptor-mediated prevention of cerebrovascular remodeling is attenuated in diabetes because of up-regulation of smooth muscle endothelin receptors," J. Pharmacol. Exp. Ther. 337, 9–15 (2011).

    [88] R. Prakash, M. Johnson, S. C. Fagan, A. Ergul, "Cerebral neovascularization and remodeling patterns in two different models of type 2 diabetes," PLoS ONE 8, e56264 (2013).

    [89] R. Haddad-Tovolli, N. R. V. Dragano, A. F. S. Ramalho, L. A. Velloso, "Development and function of the blood-brain barrier in the context of metabolic control," Front. Neurosci. 11, 224 (2017).

    [90] H. Sun, H. Hu, C. Liu, N. Sun, C. Duan, "Methods used for the measurement of blood-brain barrier integrity," Metab. Brain Dis. 36, 723–735 (2021).

    [91] S. Prasad, R. K. Sajja, P. Naik, L. Cucullo, "Diabetes mellitus and blood-brain barrier dysfunction: An overview," J. Pharmacovigil. 2, 125 (2014).

    [92] B. T. Hawkins, T. F. Lundeen, K. M. Norwood, H. L. Brooks, R. D. Egleton, "Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: contribution of hyperglycaemia and matrix metalloproteinases," Diabetologia 50, 202–211 (2007).

    [93] A. M. Stranahan, S. Hao, A. Dey, X. Yu, B. Baban, "Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice," J. Cereb. Blood Flow Metab. 36, 2108–2121 (2016).

    [94] Z. Y. Yu, L. Lin, Y. H. Jiang, I. Chin, X. J. Wang, X. K. Li, E. H. Lo, X. Y. Wang, "Recombinant FGF21 protects against blood-brain barrier leakage through Nrf2 upregulation in type 2 diabetes mice," Mol. Neurobiol. 56, 2314–2327 (2019).

    [95] S. Rom, V. Zuluaga-Ramirez, S. Gajghate, A. Seliga, M. Winfield,N. A.Heldt, M. A. Kolpakov, Y. V. Bashkirova, A. K. Sabri, Y. Persidsky, "Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes mellitus (DM) type 1 and type 2 mouse models," Mol. Neurobiol. 56, 1883–1896 (2019).

    [96] L. P. Reagan, "Diabetes as a chronic metabolic stressor: Causes, consequences and clinical complications," Exp. Neurol. 233, 68–78 (2012).

    [97] C. Zhang, W. Feng, Y. Zhao, T. Yu, P. Li, T. Xu, Q. Luo, D. Zhu, "A large, switchable optical clearing skull window for cerebrovascular imaging," Theranostics 8, 2696–2708 (2018).

    [98] Y. J. Zhao, T. T. Yu, C. Zhang, Z. Li, Q. M. Luo, T. H. Xu, D. Zhu, "Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution," Light Sci. Appl. 7, 17153 (2018).

    [99] H. L. Minuk, Diseases of the kidneys and urinary tract, Brackenridge's Medical Selection of Life Risks, R. D. C. Brackenridge, R. S. Croxson, R. MacKenzie, Eds., pp. 611–654, Palgrave Macmillan, Hampshire (2006).

    [100] Y. An, F. Xu, W. Le, Y. Ge, M. Zhou, H. Chen, C. Zeng, H. Zhang, Z. Liu, "Renal histologic changes and the outcome in patients with diabetic nephropathy," Nephrol. Dial. Transplant. 30, 257–266 (2015).

    [101] J. S. Cameron, "The discovery of diabetic nephropathy: from small print to centre stage," J. Nephrol. 19(Suppl 10), S75–S87 (2006).

    [102] Y. Chen, K. Lee, Z. Ni, J. C. He, "Diabetic kidney disease: Challenges, advances, and opportunities," Kidney Dis. (Basel) 6, 215–225 (2020).

    [103] R. Saran, B. Robinson, K. C. Abbott, L. Y. C. Agodoa, J. Bragg-Gresham, R. Balkrishnan, N. Bhave, X. Dietrich, Z. Ding, P. W. Eggers, A. Gaipov, D. Gillen, D. Gipson, H. Gu, P. Guro, D. Haggerty, Y. Han, K. He, W. Herman, M. Heung, R. A. Hirth, J.-T. Hsiung, D. Hutton, A. Inoue, S. J. Jacobsen, Y. Jin, K. Kalantar-Zadeh, A. Kapke, C.-E. Kleine, C. P. Kovesdy, W. Krueter, V. Kurtz, Y. Li, S. Liu, M. V. Marroquin, K. McCullough, M. Z. Molnar, Z. Modi, M. Montez-Rath, H.Moradi, H. Morgenstern, P. Mukhopadhyay, B. Nallamothu, D. V. Nguyen, K. C. Norris, A. M. O'Hare, Y. Obi, C. Park, J. Pearson, R. Pisoni, P. K. Potukuchi, K. Repeck, C. M. Rhee, D. E. Schaubel, J. Schrager, D. T. Selewski, R. Shamraj, S. F. Shaw, J.M. Shi,M. Shieu, J. J. Sim,M. Soohoo, D. Steffick, E. Streja, K. Sumida, M. Kurella Tamura, A. Tilea, M. Turf, D. Wang, W. Weng, K. J. Woodside, A. Wyncott, J. Xiang, X. Xin, M. Yin, A. S. You, X. Zhang, H. Zhou, V. Shahinian, "US Renal Data System 2018 Annual Data Report: Epidemiology of kidney disease in the United States," Am. J. Kidney Dis. 73, A7–A8 (2019).

    [104] W. K. C. Leung, L. Gao, P. M. Siu, C. W. K. Lai, "Diabetic nephropathy and endothelial dysfunction: Current and future therapies, and emerging of vascular imaging for preclinical renal-kinetic study," Life Sci. 166, 121–130 (2016).

    [105] C. Carrara, M. Abbate, S. Conti, D. Rottoli, P. Rizzo, G. Marchetti, Histological examination of the diabetic kidney, Diabetic Nephropathy: Methods and Protocols, L. Gnudi, D. A. Long, Eds., pp. 63–87, Springer, US, New York, NY (2020).

    [106] A. J. Joseph, E. A. Friedman, "Diabetic nephropathy in the elderly," Clin. Geriatr. Med. 25, 373–389 (2009).

    [107] Y. S. Kanwar, J. Wada, L. Sun, P. Xie, E. I. Wallner, S. Chen, S. Chugh, F. R. Danesh, "Diabetic nephropathy: mechanisms of renal disease progression," Exp. Biol. Med. (Maywood) 233, 4–11 (2008).

    [108] L. Zeni, A. G. W. Norden, G. Cancarini, R. J. Unwin, "A more tubulocentric view of diabetic kidney disease," J. Nephrol. 30, 701–717 (2017).

    [109] F. C. Brosius, 3rd, "New insights into the mechanisms of fibrosis and sclerosis in diabetic nephropathy," Rev. Endocr. Metab. Disord. 9, 245–254 (2008).

    [110] K. E. White, R. W. Bilous, "Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease," J. Am. Soc. Nephrol. 11, 1667–1673 (2000).

    [111] R. Osterby, M. A. Gall, A. Schmitz, F. S. Nielsen, G. Nyberg, H. H. Parving, "Glomerular structure and function in proteinuric type 2 (non-insulindependent) diabetic patients," Diabetologia 36, 1064–1070 (1993).

    [112] P. L. Brito, P. Fioretto, K. Drummond, Y. Kim, M. W. Steffes, J. M. Basgen, S. Sisson-Ross, M. Mauer, "Proximal tubular basement membrane width in insulin-dependent diabetes mellitus," Kidney Int. 53, 754–761 (1998).

    [113] R. D. Harris, M. W. Steffes, R. W. Bilous, D. E. R. Sutherland, S. M. Mauer, "Global glomerular sclerosis and glomerular arteriolar hyalinosis in insulin dependent diabetes," Kidney Int. 40, 107–114 (1991).

    [114] P. Fioretto, M. Mauer, "Histopathology of diabetic nephropathy," Semin. Nephrol. 27, 195–207 (2007).

    [115] C. Qi, X. Mao, Z. Zhang, H. Wu, "Classification and differential diagnosis of diabetic nephropathy," J. Diabetes Res. 2017, 8637138 (2017).

    [116] Y. Maezawa, M. Takemoto, K. Yokote, "Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes," J. Diabetes Investig. 6, 3–15 (2015).

    [117] K. E. White, R. W. Bilous, "Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients," Nephrol. Dial. Transplant. 19, 1437–1440 (2004).

    [118] M. Mauer, M. L. Caramori, P. Fioretto, B. Najafian, "Glomerular structural-functional relationship models of diabetic nephropathy are robust in type 1 diabetic patients," Nephrol. Dial. Transplant. 30, 918–923 (2015).

    [119] B. Najafian, J. T. Crosson, Y. Kim, M. Mauer, "Glomerulotubular junction abnormalities are associated with proteinuria in type 1 diabetes," J. Am. Soc. Nephrol. 17, S53–S60 (2006).

    [120] L. Wang, T. Tao, W. Su, H. Yu, Y. Yu, J. Qin, "A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice," Lab Chip 17, 1749–1760 (2017).

    [121] E. A. Susaki, H. R. Ueda, "Whole-body and Whole-organ clearing and imaging techniques with single-cell resolution: Toward organism-level systems biology in mammals," Cell Chem. Biol. 23, 137–157 (2016).

    [122] K. Tainaka, A. Kuno, S. I. Kubota, T. Murakami, H. R. Ueda, "Chemical principles in tissue clearing and staining protocols for whole-body cell profiling," Annu. Rev. Cell Dev. Biol. 32, 713–741 (2016).

    [123] D. S. Richardson, J. W. Lichtman, "Clarifying tissue clearing," Cell 162, 246–257 (2015).

    [124] A. Ertürk, K. Becker, N. Jahrling, C. P. Mauch, C. D. Hojer, J. G. Egen, F. Hellal, F. Bradke, M. Sheng, H.-U. Dodt, "Three-dimensional imaging of solvent-cleared organs using 3DISCO," Nat. Protoc. 7, 1983–1995 (2012).

    [125] Y. Qi, T. Yu, J. Xu, P. Wan, Y. Ma, J. Zhu, Y. Li, H. Gong, Q. Luo, D. Zhu, "FDISCO: Advanced solvent-based clearing method for imaging whole organs," Sci. Adv. 5, eaau8355 (2019).

    [126] J. Zhu, Y. Ma, J. Xu, Y. Li, P. Wan, Y. Qi, T. Yu, D. Zhu, "Dec-DISCO: decolorization DISCO clearing for seeing through the biological architectures of heme-rich organs," Biomed. Opt. Express 12, 5499–5513 (2021).

    [127] H. Hama, H. Hioki, K. Namiki, T. Hoshida, H. Kurokawa, F. Ishidate, T. Kaneko, T. Akagi, T. Saito, T. Saido, A. Miyawaki, "ScaleS: an optical clearing palette for biological imaging," Nat. Neurosci. 18, 1518–1529 (2015).

    [128] H. Hama, H. Kurokawa, H. Kawano, R. Ando, T. Shimogori, H. Noda, K. Fukami, A. Sakaue-Sawano, A.Miyawaki, "Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain," Nat. Neurosci. 14, 1481–1488 (2011).

    [129] K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, K. Deisseroth, "Structural and molecular interrogation of intact biological systems," Nature 497, 332–337 (2013).

    [130] H. Du, P. Hou, W. Zhang, Q. Li, "Advances in CLARITY-based tissue clearing and imaging," Exp. Ther. Med. 16, 1567–1576 (2018).

    [131] T. Yu, Y. Qi, H. Gong, Q. Luo, D. Zhu, "Optical clearing for multiscale biological tissues," J. Biophotonics 11, e201700187 (2018).

    [132] H. R. Ueda, A. Erturk, K. Chung, V. Gradinaru, A. Chedotal, P. Tomancak, P. J. Keller, "Tissue clearing and its applications in neuroscience," Nat. Rev. Neurosci. 21, 61–79 (2020).

    [133] T. N. Lerner, L. Ye, K. Deisseroth, "Communication in neural circuits: Tools, opportunities, and challenges," Cell 164, 1136–1150 (2016).

    [134] N. Renier, Z. Wu, D. J. Simon, J. Yang, P. Ariel, M. Tessier-Lavigne, "iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging," Cell 159, 896–910 (2014).

    [135] A. Klingberg, A. Hasenberg, I. Ludwig-Portugall, A. Medyukhina, L. Mann, A. Brenzel, D. R. Engel, M. T. Figge, C. Kurts, M. Gunzer, "Fully automated evaluation of total glomerular number and capillary tuft size in nephritic kidneys using lightsheet microscopy," J. Am. Soc. Nephrol. 28, 452–459 (2017).

    [136] D. Jing, S. Zhang,W. Luo, X. Gao, Y. Men, C. Ma, X. Liu, Y. Yi, A. Bugde, B. O. Zhou, Z. Zhao, Q. Yuan, J. Q. Feng, L. Gao, W.-P. Ge, H. Zhao, "Tissue clearing of both hard and soft tissue organs with the PEGASOS method," Cell Res. 28, 803–818 (2018).

    [137] S. Zhao, M. I. Todorov, R. Cai, R. A. Maskari, H. Steinke, E. Kemter, H. Mai, Z. Rong, M. Warmer, K. Stanic, O. Schoppe, J. C. Paetzold, B. Gesierich, M. N. Wong, T. B. Huber, M. Duering, O. T. Bruns, B. Menze, J. Lipfert, V. G. Puelles, E. Wolf, I. Bechmann, A. Erturk, "Cellular and molecular probing of intact human organs," Cell 180, 796–812.e719 (2020).

    [138] K. Tainaka, S. I. Kubota, T. Q. Suyama, E. A. Susaki, D. Perrin, M. Ukai-Tadenuma, H. Ukai, H. R. Ueda, "Whole-body imaging with single-cell resolution by tissue decolorization," Cell 159, 911–924 (2014).

    [139] K. Tainaka, T. C. Murakami, E. A. Susaki, C. Shimizu, R. Saito, K. Takahashi, A. Hayashi-Takagi, H. Sekiya, Y. Arima, S. Nojima, M. Ikemura, T. Ushiku, Y. Shimizu, M. Murakami, K. F. Tanaka, M. Iino, H. Kasai, T. Sasaoka, K. Kobayashi, K. Miyazono, E. Morii, T. Isa, M. Fukayama, A. Kakita, H. R. Ueda, "Chemical landscape for tissue clearing based on hydrophilic reagents," Cell Rep. 24, 2196–2210.e2199 (2018).

    [140] P.Matryba, L. Bozycki,M. Pawlowska, L. Kaczmarek, M. Stefaniuk, "Optimized perfusion-based CUBIC protocol for the efficient whole-body clearing and imaging of rat organs," J. Biophotonics 11, e201700248 (2018).

    [141] S. Hasegawa, E. A. Susaki, T. Tanaka, H. Komaba, T. Wada, M. Fukagawa, H. R. Ueda, M. Nangaku, "Comprehensive three-dimensional analysis (CUBIC-kidney) visualizes abnormal renal sympathetic nerves after ischemia/reperfusion injury," Kidney Int. 96, 129–138 (2019).

    [142] J. Zhu, T. Yu, Y. Li, J. Xu, Y. Qi, Y. Yao, Y. Ma, P. Wan, Z. Chen, X. Li, H. Gong, Q. Luo, D. Zhu, "MACS: Rapid aqueous clearing system for 3D mapping of intact organs," Adv. Sci. (Weinh.) 7, 1903185 (2020).

    [143] N. Renier, E. L. Adams, C. Kirst, Z. Wu, R. Azevedo, J. Kohl, A. E. Autry, L. Kadiri, K. Umadevi Venkataraju, Y. Zhou, V. X. Wang, C. Y. Tang, O. Olsen, C. Dulac, P. Osten, M. Tessier-Lavigne, "Mapping of brain activity by automated volume analysis of immediate early genes," Cell 165, 1789–1802 (2016).

    [144] F. de Chaumont, S. Dallongeville, N. Chenouard, N. Herve, S. Pop, T. Provoost, V. Meas-Yedid, P. Pankajakshan, T. Lecomte, Y. Le Montagner, T. Lagache, A. Dufour, J.-C. Olivo-Marin, "Icy: an open bioimage informatics platform for extended reproducible research," Nat. Methods 9, 690–696 (2012).

    [145] H. Peng, A. Bria, Z. Zhou, G. Iannello, F. Long, "Extensible visualization and analysis for multidimensional images using Vaa3D," Nat. Protoc. 9, 193–208 (2014).

    [146] S. Hasegawa, T. Tanaka, T. Saito, K. Fukui, T. Wakashima, E. A. Susaki, H. R. Ueda, M. Nangaku, "The oral hypoxia-inducible factor prolyl hydroxylase inhibitor enarodustat counteracts alterations in renal energy metabolism in the early stages of diabetic kidney disease," Kidney Int. 97, 934–950 (2020).

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Optical angiography for diabetes-induced pathological changes in microvascular structure and function: An overview[J]. Journal of Innovative Optical Health Sciences, 2022, 15(1): 2230002
    Download Citation