• Photonics Research
  • Vol. 11, Issue 8, 1423 (2023)
Da-Jie Yang1、2、*, Song-Jin Im3、5, Hai-Wen Huang1, Chol-Song Ri3, Kum-Dong Kim3, Kil-Song Song3, Ji-Cai Liu1、2, and Qu-Quan Wang4、6
Author Affiliations
  • 1Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
  • 2Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071000, China
  • 3Department of Physics, Kim Il Sung University, 02-381-4410 Pyongyang, Republic of Korea
  • 4Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
  • 5e-mail: sj.im@ryongnamsan.edu.kp
  • 6e-mail: qqwang@sustech.edu.cn
  • show less
    DOI: 10.1364/PRJ.488215 Cite this Article Set citation alerts
    Da-Jie Yang, Song-Jin Im, Hai-Wen Huang, Chol-Song Ri, Kum-Dong Kim, Kil-Song Song, Ji-Cai Liu, Qu-Quan Wang. Anomalous plasmon coupling and Fano resonance under structured light[J]. Photonics Research, 2023, 11(8): 1423 Copy Citation Text show less
    References

    [1] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [2] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [3] P. Nordlander. Plasmonics: the dark side of the ring. Nat. Nanotechnol., 8, 76-77(2013).

    [4] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, C. A. Mirkin. Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B, 110, 2150-2154(2006).

    [5] S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di Vece, M. Wubs, N. A. Mortensen, N. Stenger. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nat. Commun., 6, 8788(2015).

    [6] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis. Magnetic response of metamaterials at 100 terahertz. Science, 306, 1351-1353(2004).

    [7] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, C. M. Soukoulis. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett., 95, 203901(2005).

    [8] D. J. Yang, S. Zhang, S. J. Im, Q. Q. Wang, H. Xu, S. Gao. Analytical analysis of spectral sensitivity of plasmon resonances in a nanocavity. Nanoscale, 11, 10977-10983(2019).

    [9] D. J. Yang, S. J. Ding, L. Ma, Q. X. Mu, Q. Q. Wang. SPP standing waves within plasmonic nanocavities. Opt. Express, 30, 44055-44070(2022).

    [10] T. Kaelberer, V. A. Fedotov, N. Papasimakis, D. P. Tsai, N. I. Zheludev. Toroidal dipolar response in a metamaterial. Science, 330, 1510-1512(2010).

    [11] H. S. Kang, W. Q. Zhao, T. Zhou, L. Ma, D. J. Yang, X. B. Chen, S. J. Ding, Q. Q. Wang. Toroidal dipole-modulated dipole-dipole double-resonance in colloidal gold rod-cup nanocrystals for improved SERS and second-harmonic generation. Nano Res., 15, 9461-9469(2022).

    [12] M. Hentschel, M. Schaferling, X. Duan, H. Giessen, N. Liu. Chiral plasmonics. Sci. Adv., 3, e1602735(2017).

    [13] J. Ni, S. Liu, G. Hu, Y. Hu, Z. Lao, J. Li, Q. Zhang, D. Wu, S. Dong, J. Chu, C. W. Qiu. Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum. ACS Nano, 15, 2893-2900(2021).

    [14] C. Sonnichsen, B. M. Reinhard, J. Liphardt, A. P. Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat. Biotechnol., 23, 741-745(2005).

    [15] T. H. Makaryan. Numerical simulations on longitudinal surface plasmons of coupled gold nanorods. J. Contemp. Phys., 46, 111-115(2011).

    [16] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

    [17] P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

    [18] A. M. Funston, C. Novo, T. J. Davis, P. Mulvaney. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett., 9, 1651-1658(2009).

    [19] A. E. Miroshnichenko, S. Flach, Y. S. Kivshar. Fano resonances in nanoscale structures. Rev. Mod. Phys., 82, 2257-2298(2010).

    [20] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [21] Z.-J. Yang, Z.-H. Hao, H.-Q. Lin, Q.-Q. Wang. Plasmonic Fano resonances in metallic nanorod complexes. Nanoscale, 6, 4985-4997(2014).

    [22] D.-J. Yang, Z.-J. Yang, Y.-Y. Li, L. Zhou, Z.-H. Hao, Q.-Q. Wang. Tunable Fano resonance in rod-ring plasmonic nanocavities. Plasmonics, 10, 263-269(2014).

    [23] D. J. Yang, S. J. Im, G. M. Pan, S. J. Ding, Z. J. Yang, Z. H. Hao, L. Zhou, Q. Q. Wang. Magnetic Fano resonance-induced second-harmonic generation enhancement in plasmonic metamolecule rings. Nanoscale, 9, 6068-6075(2017).

    [24] S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett., 101, 047401(2008).

    [25] N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [26] J. Zuloaga, E. Prodan, P. Nordlander. Quantum description of the plasmon resonances of a nanoparticle dimer. Nano Lett., 9, 887-891(2009).

    [27] O. Perez-Gonzalez, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, J. Aizpurua. Optical spectroscopy of conductive junctions in plasmonic cavities. Nano Lett., 10, 3090-3095(2010).

    [28] D. L. Andrews. Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces(2011).

    [29] N. M. Litchinitser. Applied physics. Structured light meets structured matter. Science, 337, 1054-1055(2012).

    [30] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [31] A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [32] L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [33] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [34] Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [35] M. J. Padgett. Orbital angular momentum 25 years on [Invited]. Opt. Express, 25, 11265-11274(2017).

    [36] A. Aiello, P. Banzer, M. Neugebauer, G. Leuchs. From transverse angular momentum to photonic wheels. Nat. Photonics, 9, 789-795(2015).

    [37] P. Banzer, M. Neugebauer, A. Aiello, C. Marquardt, N. Lindlein, T. Bauer, G. Leuchs. The photonic wheel - demonstration of a state of light with purely transverse angular momentum. J. Eur. Opt. Soc. Rap., 8, 13032(2013).

    [38] S. M. Barnett. Optical angular-momentum flux. J. Opt. B, 4, S7-S16(2002).

    [39] S. M. Barnett, M. Babiker, M. J. Padgett. Optical orbital angular momentum. Philos. Trans. R. Soc. A, 375, 20150444(2017).

    [40] A. Chong, C. Wan, J. Chen, Q. Zhan. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [41] R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, F. Capasso. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [42] Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, R. Agarwal. Photocurrent detection of the orbital angular momentum of light. Science, 368, 763-767(2020).

    [43] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2019).

    [44] A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, S. Ashrafi. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos. Trans. R. Soc. A, 375, 20150439(2017).

    [45] T. Stav, A. Faerman, E. Maguid, D. Oren, V. Kleiner, E. Hasman, M. Segev. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science, 361, 1101-1104(2018).

    [46] B. Chen, Y. Wei, T. Zhao, S. Liu, R. Su, B. Yao, Y. Yu, J. Liu, X. Wang. Bright solid-state sources for single photons with orbital angular momentum. Nat. Nanotechnol., 16, 302-307(2021).

    [47] X. Wang, Z. Nie, Y. Liang, J. Wang, T. Li, B. Jia. Recent advances on optical vortex generation. Nanophotonics, 7, 1533-1556(2018).

    [48] Z. Zhang, X. Qiao, B. Midya, K. Liu, J. Sun, T. Wu, W. Liu, R. Agarwal, J. M. Jornet, S. Longhi, N. M. Litchinitser, L. Feng. Tunable topological charge vortex microlaser. Science, 368, 760-763(2020).

    [49] A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, J. Laurat. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics, 8, 234-238(2014).

    [50] Y. Chen, S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed quantum dense coding. Phys. Rev. Lett., 127, 093601(2021).

    [51] S. W. Hancock, S. Zahedpour, H. M. Milchberg. Mode structure and orbital angular momentum of spatiotemporal optical vortex pulses. Phys. Rev. Lett., 127, 193901(2021).

    [52] K. Y. Bliokh. Spatiotemporal vortex pulses: angular momenta and spin-orbit interaction. Phys. Rev. Lett., 126, 243601(2021).

    [53] X. Ouyang, Y. Xu, M. Xian, Z. Feng, L. Zhu, Y. Cao, S. Lan, B.-O. Guan, C.-W. Qiu, M. Gu, X. Li. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photonics, 15, 901-907(2021).

    [54] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [55] H. Ren, X. Fang, J. Jang, J. Burger, J. Rho, S. A. Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [56] H. Ren, X. Li, Q. Zhang, M. Gu. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [57] J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. E. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [58] H. Zhou, B. Sain, Y. Wang, C. Schlickriede, R. Zhao, X. Zhang, Q. Wei, X. Li, L. Huang, T. Zentgraf. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano, 14, 5553-5559(2020).

    [59] L. Deng, J. Deng, Z. Guan, J. Tao, Y. Chen, Y. Yang, D. Zhang, J. Tang, Z. Li, Z. Li, S. Yu, G. Zheng, H. Xu, C. W. Qiu, S. Zhang. Malus-metasurface-assisted polarization multiplexing. Light Sci. Appl., 9, 101(2020).

    [60] F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, F. Romanato. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys., 14, 033001(2012).

    [61] K. Zhang, Y. Yuan, X. Ding, H. Li, B. Ratni, Q. Wu, J. Liu, S. N. Burokur, J. Tan. Polarization-engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser Photonics Rev., 15, 2000351(2020).

    [62] M. Fox. Optical Properties of Solids(2002).

    [63] S. Franke-Arnold. Optical angular momentum and atoms. Philos. Trans. R. Soc. A, 375, 20150435(2017).

    [64] C. T. Schmiegelow, F. Schmidt-Kaler. Light with orbital angular momentum interacting with trapped ions. Eur. Phys. J. D, 66, 157(2012).

    [65] J. Weiner, P.-T. Ho, K. C. Dee. Light-matter Interaction: Fundamentals and Applications, 1(2003).

    [66] W. Frederick. Optical Properties of Solids(2013).

    [67] N. B. Simpson, K. Dholakia, L. Allen, M. J. Padgett. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett., 22, 52-54(1997).

    [68] P. H. Jones, O. M. Maragò, G. Volpe. Optical Tweezers: Principles and Applications(2015).

    [69] M. F. Andersen, C. Ryu, P. Clade, V. Natarajan, A. Vaziri, K. Helmerson, W. D. Phillips. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett., 97, 170406(2006).

    [70] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [71] K. Sakai, K. Nomura, T. Yamamoto, K. Sasaki. Excitation of multipole plasmons by optical vortex beams. Sci. Rep., 5, 8431(2015).

    [72] T. Arikawa, T. Hiraoka, S. Morimoto, F. Blanchard, S. Tani, T. Tanaka, K. Sakai, H. Kitajima, K. Sasaki, K. Tanaka. Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials. Sci. Adv., 6, eaay1977(2020).

    [73] R. M. Kerber, J. M. Fitzgerald, D. E. Reiter, S. S. Oh, O. Hess. Reading the orbital angular momentum of light using plasmonic nanoantennas. ACS Photonics, 4, 891-896(2017).

    [74] D. K. Sharma, V. Kumar, A. B. Vasista, D. Paul, S. K. Chaubey, G. V. P. Kumar. Optical orbital angular momentum read-out using a self-assembled plasmonic nanowire. ACS Photonics, 6, 148-153(2018).

    [75] R. Kerber, J. Fitzgerald, S. Oh, D. Reiter, O. Hess. Orbital angular momentum dichroism in nanoantennas. Commun. Phys., 1, 87(2018).

    [76] D. J. Yang, S. J. Im, Y. Li, C. S. Ri, K. S. Ho, J. S. Pae, Q. Q. Wang. Interactions between plasmonic nanoantennas and vortex beams. Nano Lett., 22, 5015-5021(2022).

    [77] S. Reich, N. S. Mueller, M. Bubula. Selection rules for structured light in nanooligomers and other nanosystems. ACS Photonics, 7, 1537-1550(2020).

    [78] I. A. Litvin, N. S. Mueller, S. Reich. Selective excitation of localized surface plasmons by structured light. Opt. Express, 28, 24262-24274(2020).

    [79] P. B. Johnson, R.-W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    Da-Jie Yang, Song-Jin Im, Hai-Wen Huang, Chol-Song Ri, Kum-Dong Kim, Kil-Song Song, Ji-Cai Liu, Qu-Quan Wang. Anomalous plasmon coupling and Fano resonance under structured light[J]. Photonics Research, 2023, 11(8): 1423
    Download Citation