• Journal of Terahertz Science and Electronic Information Technology
  • Vol. 19, Issue 6, 951 (2021)
ZHANG Ziyang1、2, FAN Fei1、2、*, and CHANG Shengjiang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11805/tkyda2021331 Cite this Article
    ZHANG Ziyang, FAN Fei, CHANG Shengjiang. Terahertz polarization sensing for biochemical samples[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(6): 951 Copy Citation Text show less
    References

    [1] ANDREA M. Terahertz dielectric sensitivity to biomolecular structure and function[J]. IEEE J Sel Top Quant, 2008, 14(1):180-190. doi:10.1109/JSTQE.2007.913424.

    [2] TOBIAS K, KOICHIRO T, KEITH N. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 2013, 7(9):680-690. doi:10.1038/NPHOTON.2013.184.

    [3] YANG X, ZHAO X, YANG K, et al. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends Biotechnol, 2016, 34(10):810-824. doi:10.1016/j.tibtech.2016.04.008.

    [4] YUKO U, RAKCHANOK R, ISAO T, et al. Quantitative measurements of amino acids by terahertz time-domain transmission spectroscopy[J]. Analytical Chemistry, 2006, 78(15):5424–5428. doi:10.1021/ac060520y.

    [5] KUTTERUF M, BROWN C, IWAKI L, et al. Terahertz spectroscopy of short-chain polypeptides[J]. Chemical Physics Letters, 2003, 375(3):337–343. doi:10.1016/S0009-2614(03)00856-X.

    [6] FISCHER B, WALTHER M, JEPSEN P. Far-infrared vibrational modes of DNA components studied by terahertz time- domain spectroscopy[J]. Physics in Medicine and Biology, 2002, 47(21):3807–3814.

    [7] TANG Mingjie, HUANG Qing, WEI Dongshan, et al. Terahertz spectroscopy of oligonucleotides in aqueous solutions[J]. Journal of Biomedical Optics, 2015, 20(9):095009. doi:10.1117/1.JBO.20.9.095009.

    [8] BROWN E, MENDOZA E, DEYING X, et al. Narrow THz spectral signatures through an RNA solution in nanofluidic channels[J]. IEEE Sensors Journal, 2010, 10(3):755–759. doi:10.1109/JSEN.2009.2039522.

    [9] XIE Lijuan, YAO Yang, YING Yibin. The application of terahertz spectroscopy to protein detection: a review[J]. Applied Spectroscopy Reviews, 2013, 49(6):448–461. doi:10.1080/05704928.2013.847845.

    [10] OLEKSANDR S, ROSTYSLAV D, ROBERT S. Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected[J]. Journal of Chemical Physics, 2015, 142(5):055101. doi:10.1063/1.4907271.

    [11] LIU Rui, HE Mingxia, SU Rongxin, et al. Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods[J]. Biochemical and Biophysical Research Communications, 2010, 391(1):862–867. doi:10.1016/j. bbrc.2009.11.153.

    [12] SHIRAGA K, SUZUKI T, KONDO N, et al. Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy[J]. Applied Physics Letters, 2015, 106(25):253701. doi:10.1063/1.4922918.

    [13] LIU Lei, LI Tengfei, LIU Zixian, et al. Terahertz polarization sensing based on metasurface microsensor display anti- proliferation of tumor cells with aspirin[J]. Biomed Opt Express, 2020, 11(5):2416–2430. doi:10.1364/BOE.392056.

    [14] HOU Dibo, LI Xian, CAI Jinhui, et al. Terahertz spectroscopic investigation of human gastric normal and tumor tissues[J]. Phys Med Biol, 2014, 59(18):5423–5440.

    [15] YU B, ZENG F, YANG Y, et al. Torsional vibrational modes of tryptophan studied by terahertz time-domain spectroscopy[J]. Biophys J, 2004, 86(3):1649-1654. doi:10.1016/S0006-3495(04)74233-2.

    [16] BOLIVAR H, BRUCHERSEIFER M, NAGEL M, et al. Label-free probing of genes by time-domain terahertz sensing[J]. Physics in Medicine and Biology, 2002, 47(21):3815-3821.

    [17] LIU Haibo, PLOPPER G, EARLEY S, et al. Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy[J]. Biosensors and Bioelectronics, 2007, 22(6):1075-1080. doi:10.1016/j.bios.2006.02.021.

    [18] SMITH D, PENDRY J, WILTSHIRE M, et al. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. doi:10.1126/science.1096796.

    [19] HENTSCHEL M, SCH?FERLING M, DUAN Xiaoyang, et al. Chiral plasmonics[J]. Science Advance, 2017, 3(5):e1602735. doi:10.1126/sciadv.1602735.

    [20] VALEV V, BAUMBERG J, SIBILIA C, et al. Chirality and chiroptical effects in plasmonic nanostructures:fundamentals, recent progress, and outlook[J]. Advanced Materials, 2013, 25(18):2517-2534. doi:10.1002/adma.201205178.

    [21] CHEN Meng, FAN Fei, SHEN Si, et al. Terahertz ultrathin film thickness sensor below λ/90 based on metamaterial[J]. Appl Opt, 2016, 55(23):6471-6474. doi:10.1364/AO.55.006471.

    [22] ZHAO Xiang, LIN Zhongquan, WANG Yunxia, et al. Label-free self-referenced sensing of living cells by terahertz metamaterial- based reflection spectroscopy[J]. Biomed Opt Express, 2019, 10(3):1196-1206. doi:10.1364/BOE.10.001196.

    [23] GANSEL J, THIEL M, RILL M, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947):1513-1515. doi:10.1126/science.1177031.

    [24] LIU Na, LIU Hui, ZHU Shining, et al. Stereometamaterials[J]. Nature Photonics, 2009, 3(3):157–162.

    [25] PLUM E, LIU X, FEDOTOV V. Metamaterials:optical activity without chirality[J]. Phys Rev Lett, 2009, 102(11):113902. doi:10.1103/PhysRevLett.102.113902.

    [26] YESILKOY F, ARVELO E, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6):390-396.

    [27] SALIM A, LIM S. Complementary split-ring resonator-loaded microfluidic ethanol chemical sensor[J]. Sensors, 2016, 16(11):1802-1810. doi:10.3390/s16111802.

    [28] XU Wendao, XIE Lijuan, ZHU Jianfei, et al. Terahertz biosensing with a graphene-metamaterial heterostructure platform[J]. Carbon, 2018, 141(18):247–252. doi:10.1016/j.carbon.2018.09.050.

    [29] TANG Mingjie, XIA Liangping, WEI Dongshan, et al. Rapid and label-free metamaterial-based biosensor for fatty acid detection with terahertz time-domain spectroscopy[J]. Spectrochim Acta A, 2019, 228:117736. doi:10.1016/j.saa.2019. 117736.

    [30] NOWAK Maciej Roman, ZDUNKE Rafal, PLINSKI Edward, et al. Recognition of Pharmacological Bi-Heterocyclic Compounds by Using Terahertz Time Domain Spectroscopy and Chemometrics[J]. Sensors, 2019, 19(15):3349. doi:10.3390/s19153349.

    [31] ZHOU Hong, YANG Cheng, HU Donglin, et al. Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication[J]. Appl Phys Lett, 2019, 115(14):143507–143512. doi:10.1063/1.5111584.

    [32] YANG Jun, QI Limei, LI Bin, et al. A terahertz metamaterial sensor used for distinguishing glucose concentration[J]. Results Phys, 2021, 26(1):104332. doi:10.1016/j.rinp.2021.104332.

    [33] YANG Yuping, XU Dongqian, ZHANG Weili, et al. High-sensitivity and label-free identification of a transgenic genome using a terahertz metabiosensor[J]. Opt Express, 2018, 26(24):31589-31599. doi:10.1364/OE.26.031589.

    [34] YANG Ke, LI Jining, LAMY de la Chapelle, et al. A terahertz metamaterial biosensor for sensitive detection of microRNAs based on gold-nanoparticles and strand displacement amplification[J]. Biosens Bioelectron, 2020, 175:112874. doi: 10.1016/j.bios.2020.112874.

    [35] ZHOU Ruiyun, WANG Chen, HUANG Yuxin, et al. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures[J]. Biosens Bioelectron, 2021, 188:113336. doi:10.1016/j.bios.2021.113336.

    [36] ZHANG Xinyu, YANG Sha, HUANG Guorong, et al. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification[J]. Biosens Bioelectron, 2021, 188:113314. doi:10.1016/j.bios.2021.113314.

    [37] GENG Zhaoxin, ZHANG Xiong, FAN Zhiyuan, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. Sci Rep, 2017, 7(1):16378–16389.

    [38] CUI Ning, GUAN Min, XU Mengke, et al. Design and application of terahertz metamaterial sensor based on DSRRs in clinical quantitative detection of carcinoembryonic antigen[J]. Opt Express, 2020, 28(11):16834-16844. doi:10.1364/ OE.393397.

    [39] LI Dongxia, LIN Shangjun, HU Fangrong, et al. Metamaterial terahertz sensor for measuring thermal-induced denaturation temperature of insulin[J]. IEEE Sensors Journal, 2020, 20(4):1821-1828. doi:10.1109/JSEN.2019.2949617.

    [40] ZHOU Jie, ZHAO Xiang, HUANG Guorong, et al. Molecule-specific terahertz biosensors based on an aptamer hydrogel- functionalized metamaterial for sensitive assays in aqueous environments[J]. ACS Sensors, 2021, 6(5):1884-1890. doi: 10.1021/acssensors.1c00174.

    [41] WANG Gangqi, ZHU Fengjie, LANG Tingting, et al. All-metal terahertz metamaterial biosensor for protein detection[J]. Nanoscale Res Lett, 2021, 16(1):109-119. doi:10.21203/rs.3.rs-358182/v1.

    [42] AHMADIVAND Arash, GERISLIOGLU Burak, RAMEZANI Zeinab, et al. Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins[J]. Biosens Bioelectron, 2021, 177:112971. doi:10.1016/j. bios.2021.112971.

    [43] YANG Maosheng, LIANG Lanju, ZHANG Zhang, et al. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells[J]. Opt Express, 2019, 27(14):19520-19530. doi:10.1364/OE.27.019520.

    [44] YANG Ke, YANG Xiang, ZHAO Xiang, et al. THz spectroscopy for rapid and label-free cell viability assay in microfluidic chip based on optical clearing agent[J]. Anal Chem, 2019, 91(1):785-791. doi:10.1021/acs.analchem.8b03665.

    [45] BAI Zhongyang, LIU Yongshan, KONG Ruru, et al. Near-field terahertz sensing of Hela cells and pseudomonas based on monolithic integrated metamaterials with spintronic terahertz emitter[J]. ACS Appl Mater Inter, 2020, 12(32):35895- 35902. doi:10.1021/acsami.0c08543.

    [46] ZHANG Zhang, YANG Maosheng, YAN Xin, et al. The antibody-free recognition of cancer cells using plasmonic biosensor platforms with the anisotropic resonant metasurfaces[J]. ACS Appl Mater Inter, 2020, 12(10):11388-11396. doi:10.1021/ acsami.0c00095.

    [47] LEE DongKyu, KANG JiHun, KWON Junghoon, et al. Nano metamaterials for ultrasensitive Terahertz biosensing[J]. Sci Rep, 2017, 7(1):8146–8152.

    [48] YANG Xiang, SHI Jia, WANG Yuye, et al. Label-free bacterial colony detection and viability assessment by continuous- wave terahertz transmission imaging[J]. J Biophotonics, 2018, 11(8):e201700386. doi:10.1002/jbio.201700386.

    [49] LEE SangHun, SHIN Seulgi, ROH Yeeun, et al. Label-free brain tissue imaging using large-area terahertz metamaterials[J]. Biosens Bioelectron, 2020, 170:112663. doi:10.1016/j.bios.2020.112663.

    [51] ZHANG Ziyang, YANG Guang, FAN Fei, et al. Terahertz circular dichroism sensing of living cancer cells based on microstructure sensor[J]. Anal Chim Acta, 2021, 1180(1):338871. doi:10.1016/j.aca.2021.338871.

    [52] ZHANG Ziyang, ZHONG Changzhi, FAN Fei, et al. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor[J]. Sensor Actuat B-Chem, 2021, 330(1):129315. doi:10.1016/j.snb.2020.129315.

    [54] TRACEY Simon, ANN-SOFI Duberg, SOO Aleman, et al. Association of aspirin with Hepatocellular carcinoma and liver-related mortality[J]. N Engl J Med, 2020, 382:1018-1028. doi:10.1056/NEJMoa1912035.

    [55] EVAN Lien, MATTHEW Vander Heiden. A framework for examining how diet impacts tumour metabolism[J]. Nature Reviews Cancer, 2019, 19(11):651–661.

    [56] HAN Yuanyuan, YI Gua, ZHANG Alex Ce, et al. Review: imaging technologies for flow cytometry[J]. Lab on a Chip, 2016, 16(24):4639-4647. doi:10.1039/C6LC01063F.

    [57] HYUNA Sung, JACQUES Ferlay, REBECCA Siegel, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:A Cancer J Clin, 2020, 71:209-249. doi:10.3322/ caac.21660.

    ZHANG Ziyang, FAN Fei, CHANG Shengjiang. Terahertz polarization sensing for biochemical samples[J]. Journal of Terahertz Science and Electronic Information Technology , 2021, 19(6): 951
    Download Citation