• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 5, 1650026 (2016)
Honglian Xiong1,2, Zhouyi Guo2, Huiqing Zhong2, and Yanhong Ji3,*
Author Affiliations
  • 1Sun-Yat sen University Cancer Center Guangzhou 510060, P.R. China
  • 2Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou 510631, P.R. China
  • 3Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials School of Physics and Telecommunication Engineering South China Normal niversity Guangzhou 510006, P.R. China
  • show less
    DOI: 10.1142/s1793545816500267 Cite this Article
    Honglian Xiong, Zhouyi Guo, Huiqing Zhong, Yanhong Ji. Monitoring the penetration and accumulation of gold nanoparticles in rat skin ex vivo using surface-enhanced Raman scattering spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2016, 9(5): 1650026 Copy Citation Text show less
    References

    [1] P. G. Marilyn F. Hallock, L. DiBerardinis, D. Kallin, "Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity," J. Chem. Health Saf. 16, 16–23 (2009).

    [2] H. Arami, A. Khandhar, D. Liggitt, K. M. Krishnan, "In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles," Chem. Soc. Rem. 44, 8576–8607 (2015).

    [3] N. L. Flaherty, A. Chandrasekaran, M. d. P. S. Pena, G. A. Roth, S. A. Brenner, T. J. Begley, J. A. Melendez, "Comparative analysis of redox and in- flammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nanoabrasives," Toxicol. Lett. 239, 205–215 (2015).

    [4] R. J. Uzuriaga-Sanchez, S. Khan, A. Wong, G. Picasso, M. Isabel Pividori, M. D. P. Taboada Sotomayor, "Magnetically separable polymer (Mag- MIP) for selective analysis of biotin in food samples," Food Chem. 190, 460–467 (2016).

    [5] E. Yan, M. Cao, Y. Wang, X. Hao, S. Pei, J. Gao, Y. Wang, Z. Zhang, D. Zhang, "Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery," Mat. Sci. Eng. C: Mater. Biol. Appl. 58, 1090–1097 (2016).

    [6] M. Faraday, "The Bakerian lecture: Experimental relations of gold (and other metals) to light," Philos. Trans. R. Soc. Lond. B 147, 145–181 (1857).

    [7] T. W. Prow, J. E. Grice, L. L. Lin, R. Faye,M. Butler, W. Becker, E. M. Wurm, C. Yoong, T. A. Robertson, H. P. Soyer, M. S. Roberts, "Nanoparticles and microparticles for skin drug delivery," Adv. Drug Deliv. Rev. 63, 470–491 (2011).

    [8] N. A. Monteiro-Riviere, K. Wiench, R. Landsiedel, S. Schulte, A. O. Inman, J. E. Riviere, "Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study," Toxicol. Sci. 123, 264–280 (2011).

    [9] L. Shi, J. Shan, Y. Ju, P. Aikens, R. K. Prud'- homme, "Nanoparticles as delivery vehicles for sunscreen agents," Colloid. Surf. A 396, 122–129 (2012).

    [10] M. E. Darvin, K. Koenig, M. Kellner-Hoefer, H. G. Breunig, W. Werncke, M. C. Meinke, A. Patzelt, W. Sterry, J. Lademann, "Safety assessment by multiphoton fluorescence/second harmonic generation/ hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products," Skin Pharmacol. Phys. 25, 219–226 (2012).

    [11] Y. Zhu, C.-S. Choe, S. Ahlberg, M. C. Meinke, U. Alexiev, J. Lademann, M. E. Darvin, "Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy," J. Biomed. Opt. 20, 051006 (2015).

    [12] H. I. Labouta, D. C. Liu, L. L. Lin,M. K. Butler, J. E. Grice, A. P. Raphael, T. Kraus, L. K. El-Khordagui, H. P. Soyer, M. S. Roberts, "Gold nanoparticle penetration and reduced metabolism in human skin by toluene," Pharm. Res. 28, 2931–2944 (2011).

    [13] F. F. Larese, F. D'Agostin, M. Crosera, G. Adami, N. Renzi, M. Bovenzi, G. Maina, "Human skin penetration of silver nanoparticles through intact and damaged skin," Toxicology 255, 33–37 (2009).

    [14] B. Baroli, M. G. Ennas, F. Loffredo, M. Isola, R. Pinna, M. A. López-Quintela, "Penetration of metallic nanoparticles in human full-thickness skin," J. Invest. Dermatol. 127, 1701–1712 (2007).

    [15] M. A. Sirotkina, M. V. Shirmanova, M. L. Bugrova, V. V. Elagin, P. A. Agrba, M. Y. Kirillin, V. A. Kamensky, E. V. Zagaynova, "Continuous optical coherence tomography monitoring of nanoparticles accumulation in biological tissues," J. Nanopart. Res. 13, 283–291 (2011).

    [16] G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, K. Makino, "In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size," Colloids Surf. B 65, 1–10 (2008).

    [17] G. Braun, I. Pavel, A. R. Morrill, D. S. Seferos, G. C. Bazan, N. O. Reich, M. Moskovits, "Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots," J. Am. Chem. Soc. 129, 7760–7761 (2007).

    [18] Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119–124 (2005).

    [19] H. X. Xu, J. Aizpurua, M. K ll, P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318–4324 (2000).

    [20] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne, "Probing the structure of single-molecule surface-enhanced Raman scattering hot spots," J. Am. Chem. Soc. 130, 12616–12617 (2008).

    [21] S. M. Stranahan, K. A. Willets, "Super-resolution optical imaging of single-molecule SERS Hot spots," Nano Lett. 10, 3777–3784 (2010).

    [22] Z. Zhu, T. Zhu, Z. Liu, "Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling," Nanotechnology 15, 357 (2004).

    [23] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667–1670 (1997).

    [24] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, M. S. Feld, "Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles," Appl. Spectrosc. 56, 150–154 (2002).

    [25] J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, "Novel optical nanosensors for probing and imaging live cells," Nanomedicine 6, 214–226 (2010).

    [26] W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, L. D. Ziegler, "Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria," J. Phys. Chem. B 109, 312–320 (2005).

    [27] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, "In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates," Nano Lett. 6, 2225–2231 (2006).

    [28] B. Sharma, K. Ma, M. R. Glucksberg, R. P. Van Duyne, "Seeing through bone with surface-enhanced spatially offset Raman spectroscopy," J. Am. Chem. Soc. 135, 17290–17293 (2013).

    [29] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, "The golden age: Gold nanoparticles for biomedicine," Chem. Soc. Rev. 41, 2740–2779 (2012).

    [30] G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nature 241, 20–22 (1973).

    [31] N. J. Everall, "Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy," Appl. Spectrosc. 54, 773–782 (2000).

    [32] A. Tfayli, O. Piot, M. Manfait, "Confocal Raman microspectroscopy on excised human skin: Uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation," J. Biophotonics 1, 140–153 (2008).

    [33] A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, J. Z. Zhang, "Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate," J. Phys. Chem. B 108, 19191–19197 (2004).

    [34] S. E. J. Bell, M. R. McCourt, "SERS enhancement by aggregated Au colloids: Effect of particle size," Phys. Chem. Chem. Phys. 11, 7455–7462 (2009).

    [35] M. Quinten, "Local fields close to the surface of nanoparticles and aggregates of nanoparticles," Appl. Phys. B 73, 245–255 (2001).

    [36] S. E. Lee, K. J. Choi, G. K. Menon, H. J. Kim, E. H. Choi, S. K. Ahn, S. H. Lee, "Penetration pathways induced by low-frequency sonophoresis with physical and chemical enhancers: Iron Oxide nanoparticles versus lanthanum nitrates," J. Invest. Dermatol. 130, 1063–1072 (2010).

    [37] M. Kerker, O. Siiman, L. A. Bumm, D. S. Wang, "Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver," Appl. Opt. 19, 3253–3255 (1980).

    [38] K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, M. S. Feld, "Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters," Appl. Spectrosc. 52, 1493–1497 (1998).

    [39] S.A.Khan, A. K. Singh, D. Senapati,Z.Fan,P.C.Ray, "Targeted highly sensitive detection of multi-drug resistant salmonella DT104 using gold nanoparticles," Chem. Commun. 47, 9444–9446 (2011).

    [40] H. Yuan, Y. Liu, A. M. Fales, Y. L. Li, J. Liu, T. Vo- Dinh, "Quantitative surface-enhanced resonant raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection," Anal. Chem. 85, 208–212 (2013).

    [41] J. K. Register, A. M. Fales, H.-N. Wang, S. J. Norton, E. H. Cho, A. Boico, S. Pradhan, J. Kim, T. Schroeder, N. A. Wisniewski, B. Klitzman, V.-D. Tuan, "In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models," Anal. Bioanal. Chem. 407, 8215–8224 (2015).

    [42] M. Moskovits, "Surface-enhanced Raman spectroscopy: A brief retrospective," J. Raman Spectrosc. 36, 485–496 (2005).

    [43] K. Kneipp, H. Kneipp, J. Kneipp, "Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells," Acc. Chem. Res. 39, 443–450 (2006).

    [44] S. E. J. Bell, N. M. S. Sirimuthu, "Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids," J. Phys. Chem. A 109, 7405–7410 (2005).

    [45] M. Egawa, Y. Sato, "In vivo evaluation of two forms of urea in the skin by Raman spectroscopy after application of urea-containing cream," Skin Res. Technol. 21, 259–264 (2015).

    [46] P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, G. J. Puppels, "In vitro and in vivo Raman spectroscopy of human skin," Biospectroscopy 4, S31–S39 (1998).

    [47] D. Huang, W. Zhang, H. Zhong, H. Xiong, X. Guo, Z. Guo, "Optical clearing of porcine skin tissue in vitro studied by Raman microspectroscopy," J. Biomed. Opt. 17, 015004 (2012).

    Honglian Xiong, Zhouyi Guo, Huiqing Zhong, Yanhong Ji. Monitoring the penetration and accumulation of gold nanoparticles in rat skin ex vivo using surface-enhanced Raman scattering spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2016, 9(5): 1650026
    Download Citation