[1] P. G. Marilyn F. Hallock, L. DiBerardinis, D. Kallin, "Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity," J. Chem. Health Saf. 16, 16–23 (2009).
[2] H. Arami, A. Khandhar, D. Liggitt, K. M. Krishnan, "In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles," Chem. Soc. Rem. 44, 8576–8607 (2015).
[3] N. L. Flaherty, A. Chandrasekaran, M. d. P. S. Pena, G. A. Roth, S. A. Brenner, T. J. Begley, J. A. Melendez, "Comparative analysis of redox and in- flammatory properties of pristine nanomaterials and commonly used semiconductor manufacturing nanoabrasives," Toxicol. Lett. 239, 205–215 (2015).
[4] R. J. Uzuriaga-Sanchez, S. Khan, A. Wong, G. Picasso, M. Isabel Pividori, M. D. P. Taboada Sotomayor, "Magnetically separable polymer (Mag- MIP) for selective analysis of biotin in food samples," Food Chem. 190, 460–467 (2016).
[5] E. Yan, M. Cao, Y. Wang, X. Hao, S. Pei, J. Gao, Y. Wang, Z. Zhang, D. Zhang, "Gold nanorods contained polyvinyl alcohol/chitosan nanofiber matrix for cell imaging and drug delivery," Mat. Sci. Eng. C: Mater. Biol. Appl. 58, 1090–1097 (2016).
[6] M. Faraday, "The Bakerian lecture: Experimental relations of gold (and other metals) to light," Philos. Trans. R. Soc. Lond. B 147, 145–181 (1857).
[7] T. W. Prow, J. E. Grice, L. L. Lin, R. Faye,M. Butler, W. Becker, E. M. Wurm, C. Yoong, T. A. Robertson, H. P. Soyer, M. S. Roberts, "Nanoparticles and microparticles for skin drug delivery," Adv. Drug Deliv. Rev. 63, 470–491 (2011).
[8] N. A. Monteiro-Riviere, K. Wiench, R. Landsiedel, S. Schulte, A. O. Inman, J. E. Riviere, "Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study," Toxicol. Sci. 123, 264–280 (2011).
[9] L. Shi, J. Shan, Y. Ju, P. Aikens, R. K. Prud'- homme, "Nanoparticles as delivery vehicles for sunscreen agents," Colloid. Surf. A 396, 122–129 (2012).
[10] M. E. Darvin, K. Koenig, M. Kellner-Hoefer, H. G. Breunig, W. Werncke, M. C. Meinke, A. Patzelt, W. Sterry, J. Lademann, "Safety assessment by multiphoton fluorescence/second harmonic generation/ hyper-Rayleigh scattering tomography of ZnO nanoparticles used in cosmetic products," Skin Pharmacol. Phys. 25, 219–226 (2012).
[11] Y. Zhu, C.-S. Choe, S. Ahlberg, M. C. Meinke, U. Alexiev, J. Lademann, M. E. Darvin, "Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy," J. Biomed. Opt. 20, 051006 (2015).
[12] H. I. Labouta, D. C. Liu, L. L. Lin,M. K. Butler, J. E. Grice, A. P. Raphael, T. Kraus, L. K. El-Khordagui, H. P. Soyer, M. S. Roberts, "Gold nanoparticle penetration and reduced metabolism in human skin by toluene," Pharm. Res. 28, 2931–2944 (2011).
[13] F. F. Larese, F. D'Agostin, M. Crosera, G. Adami, N. Renzi, M. Bovenzi, G. Maina, "Human skin penetration of silver nanoparticles through intact and damaged skin," Toxicology 255, 33–37 (2009).
[14] B. Baroli, M. G. Ennas, F. Loffredo, M. Isola, R. Pinna, M. A. López-Quintela, "Penetration of metallic nanoparticles in human full-thickness skin," J. Invest. Dermatol. 127, 1701–1712 (2007).
[15] M. A. Sirotkina, M. V. Shirmanova, M. L. Bugrova, V. V. Elagin, P. A. Agrba, M. Y. Kirillin, V. A. Kamensky, E. V. Zagaynova, "Continuous optical coherence tomography monitoring of nanoparticles accumulation in biological tissues," J. Nanopart. Res. 13, 283–291 (2011).
[16] G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, K. Makino, "In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size," Colloids Surf. B 65, 1–10 (2008).
[17] G. Braun, I. Pavel, A. R. Morrill, D. S. Seferos, G. C. Bazan, N. O. Reich, M. Moskovits, "Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots," J. Am. Chem. Soc. 129, 7760–7761 (2007).
[18] Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, L. P. Lee, "Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect," Nano Lett. 5, 119–124 (2005).
[19] H. X. Xu, J. Aizpurua, M. K ll, P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318–4324 (2000).
[20] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, R. P. Van Duyne, "Probing the structure of single-molecule surface-enhanced Raman scattering hot spots," J. Am. Chem. Soc. 130, 12616–12617 (2008).
[21] S. M. Stranahan, K. A. Willets, "Super-resolution optical imaging of single-molecule SERS Hot spots," Nano Lett. 10, 3777–3784 (2010).
[22] Z. Zhu, T. Zhu, Z. Liu, "Raman scattering enhancement contributed from individual gold nanoparticles and interparticle coupling," Nanotechnology 15, 357 (2004).
[23] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667–1670 (1997).
[24] K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, M. S. Feld, "Surface-enhanced Raman Spectroscopy in single living cells using gold nanoparticles," Appl. Spectrosc. 56, 150–154 (2002).
[25] J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, "Novel optical nanosensors for probing and imaging live cells," Nanomedicine 6, 214–226 (2010).
[26] W. R. Premasiri, D. T. Moir, M. S. Klempner, N. Krieger, G. Jones, L. D. Ziegler, "Characterization of the Surface Enhanced Raman Scattering (SERS) of bacteria," J. Phys. Chem. B 109, 312–320 (2005).
[27] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, "In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates," Nano Lett. 6, 2225–2231 (2006).
[28] B. Sharma, K. Ma, M. R. Glucksberg, R. P. Van Duyne, "Seeing through bone with surface-enhanced spatially offset Raman spectroscopy," J. Am. Chem. Soc. 135, 17290–17293 (2013).
[29] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, "The golden age: Gold nanoparticles for biomedicine," Chem. Soc. Rev. 41, 2740–2779 (2012).
[30] G. Frens, "Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions," Nature 241, 20–22 (1973).
[31] N. J. Everall, "Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy," Appl. Spectrosc. 54, 773–782 (2000).
[32] A. Tfayli, O. Piot, M. Manfait, "Confocal Raman microspectroscopy on excised human skin: Uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation," J. Biophotonics 1, 140–153 (2008).
[33] A. M. Schwartzberg, C. D. Grant, A. Wolcott, C. E. Talley, T. R. Huser, R. Bogomolni, J. Z. Zhang, "Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate," J. Phys. Chem. B 108, 19191–19197 (2004).
[34] S. E. J. Bell, M. R. McCourt, "SERS enhancement by aggregated Au colloids: Effect of particle size," Phys. Chem. Chem. Phys. 11, 7455–7462 (2009).
[35] M. Quinten, "Local fields close to the surface of nanoparticles and aggregates of nanoparticles," Appl. Phys. B 73, 245–255 (2001).
[36] S. E. Lee, K. J. Choi, G. K. Menon, H. J. Kim, E. H. Choi, S. K. Ahn, S. H. Lee, "Penetration pathways induced by low-frequency sonophoresis with physical and chemical enhancers: Iron Oxide nanoparticles versus lanthanum nitrates," J. Invest. Dermatol. 130, 1063–1072 (2010).
[37] M. Kerker, O. Siiman, L. A. Bumm, D. S. Wang, "Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver," Appl. Opt. 19, 3253–3255 (1980).
[38] K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, M. S. Feld, "Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters," Appl. Spectrosc. 52, 1493–1497 (1998).
[39] S.A.Khan, A. K. Singh, D. Senapati,Z.Fan,P.C.Ray, "Targeted highly sensitive detection of multi-drug resistant salmonella DT104 using gold nanoparticles," Chem. Commun. 47, 9444–9446 (2011).
[40] H. Yuan, Y. Liu, A. M. Fales, Y. L. Li, J. Liu, T. Vo- Dinh, "Quantitative surface-enhanced resonant raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection," Anal. Chem. 85, 208–212 (2013).
[41] J. K. Register, A. M. Fales, H.-N. Wang, S. J. Norton, E. H. Cho, A. Boico, S. Pradhan, J. Kim, T. Schroeder, N. A. Wisniewski, B. Klitzman, V.-D. Tuan, "In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models," Anal. Bioanal. Chem. 407, 8215–8224 (2015).
[42] M. Moskovits, "Surface-enhanced Raman spectroscopy: A brief retrospective," J. Raman Spectrosc. 36, 485–496 (2005).
[43] K. Kneipp, H. Kneipp, J. Kneipp, "Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells," Acc. Chem. Res. 39, 443–450 (2006).
[44] S. E. J. Bell, N. M. S. Sirimuthu, "Surface-enhanced Raman spectroscopy as a probe of competitive binding by anions to citrate-reduced silver colloids," J. Phys. Chem. A 109, 7405–7410 (2005).
[45] M. Egawa, Y. Sato, "In vivo evaluation of two forms of urea in the skin by Raman spectroscopy after application of urea-containing cream," Skin Res. Technol. 21, 259–264 (2015).
[46] P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, G. J. Puppels, "In vitro and in vivo Raman spectroscopy of human skin," Biospectroscopy 4, S31–S39 (1998).
[47] D. Huang, W. Zhang, H. Zhong, H. Xiong, X. Guo, Z. Guo, "Optical clearing of porcine skin tissue in vitro studied by Raman microspectroscopy," J. Biomed. Opt. 17, 015004 (2012).