• High Power Laser and Particle Beams
  • Vol. 35, Issue 3, 032001 (2023)
Chunlin Yang
Author Affiliations
  • Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.220260 Cite this Article
    Chunlin Yang. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35(3): 032001 Copy Citation Text show less
    References

    [1] Tikhonchuk V T. Physics of laser plasma interaction and particle transport in the context of inertial confinement fusion[J]. Nuclear Fusion, 59, 032001(2019).

    [2] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 53, 1057-1060(1984).

    [3] Tikhonchuk V T, Mounaix P H, Pesme D. Stimulated Brillouin scattering reflectivity in the case of a spatially smoothed laser beam interacting with an inhomogeneous plasma[J]. Physics of Plasmas, 4, 2658-2669(1997).

    [4] Yang Chunlin. Propagation characteristics of speckle field in plasma[J]. Acta Physica Sinica, 67, 085201(2018).

    [5] Hüller S, Porzio A, Robiche J. Order statistics of high-intensity speckles in stimulated Brillouin scattering and plasma-induced laser beam smoothing[J]. New Journal of Physics, 15, 025003(2013).

    [6] Yang Chunlin. Influence of phase additive effect on beam smoothing character of continuous phase plate[J]. Infrared and Laser Engineering, 49, 20190515(2020).

    [7] Goodman J W. Speckle phenomena in optics: they applications[M]. Cao Qizhi, Chen Jiabi, trans. Beijing: Science Press, 2009: 71

    [8] Wolf E. Electromagnetic diffraction in optical systems- I. An integral representation of the image field[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 253, 349-357(1959).

    [9] Foley J T, Wolf E. Wave-front spacing in the focal region of high-numerical-aperture systems[J]. Optics Letters, 30, 1312-1314(2005).

    [10] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).

    [11] Khonina S N, Golub I. Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening[J]. Journal of the Optical Society of America A, 35, 985-991(2018).

    [12] Omatsu T, Litchinitser N M, Brasselet E, et al. Focus issue introduction: synergy of structured light and structured materials[J]. Optics Express, 25, 16681-16685(2017).

    [13] Tao S H, Yuan X C, Lin J, et al. Influence of geometric shape of optically trapped particles on the optical rotation induced by vortex beams[J]. Journal of Applied Physics, 100, 043105(2006).

    [14] Lin J, Rodríguez-Herrera O G, Kenny F, et al. Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform[J]. Optics Express, 20, 1060-1069(2012).

    [15] Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 36, 888-890(2011).

    Chunlin Yang. Vector analysis on the characteristics of continuous phase plate speckle under the strong focusing[J]. High Power Laser and Particle Beams, 2023, 35(3): 032001
    Download Citation