• Acta Optica Sinica
  • Vol. 40, Issue 14, 1423001 (2020)
Meng Wu1, Xiyin Liang1、2、*, Duixiong Sun1, Lingfei Xie1, Ruilin Chen1, Dapeng Wen1, and Tianchen Zhang1
Author Affiliations
  • 1College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
  • 2Engineering Research Center of Gansu Province for Intelligent Information Technology and Application, Lanzhou, Gansu 730070, China
  • show less
    DOI: 10.3788/AOS202040.1423001 Cite this Article Set citation alerts
    Meng Wu, Xiyin Liang, Duixiong Sun, Lingfei Xie, Ruilin Chen, Dapeng Wen, Tianchen Zhang. Design of Asymmetric Rectangular Ring Resonance Cavity Electrically Adjustable Filter Based on Surface Plasmon Polaritons[J]. Acta Optica Sinica, 2020, 40(14): 1423001 Copy Citation Text show less
    References

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration[J]. Optics Express, 13, 6645-6650(2005).

    [3] Zia R, Schuller J A, Chandran A et al. Plasmonics: the next chip-scale technology[J]. Materials Today, 9, 20-27(2006).

    [4] Veronis G, Fan S H. Modes of subwavelength plasmonic slot waveguides[J]. Journal of Lightwave Technology, 25, 2511-2521(2007).

    [5] Yun B F, Hu G H, Cui Y P. Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal-insulator-metal waveguide[J]. Journal of Physics D, 43, 385102(2010).

    [6] Liu J S Q, Pala R A, Afshinmanesh F et al. A submicron plasmonic dichroic splitter[J]. Nature Communications, 2, 525(2011).

    [7] Zhu X L, Yan W, Mortensen N A et al. Bends and splitters in graphene nanoribbon waveguides[J]. Optics Express, 21, 3486-3491(2013).

    [8] Qiao L T, Zhang G M, Wang Z S et al. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons[J]. Optics Communications, 433, 144-149(2019).

    [9] Chen Y, Cao J G, Xu Y M et al. Fano resonance sensing characteristics of metal-dielectric-metal waveguide coupling square cavity with bimetallic baffle[J]. Chinese Journal of Lasers, 46, 0213001(2019).

    [10] Wang M M, Yun L Y, Wang Y F et al. Plasma refractive index nanosensor based on Fano resonance[J]. Laser & Optoelectronics Progress, 57, 052401(2020).

    [11] Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 440, 508-511(2006).

    [12] Xu Q, Zhang X Q, Wei M G et al. Efficient metacoupler for complex surface plasmon launching[J]. Advanced Optical Materials, 6, 1701117(2018).

    [13] Gao X, Che W Q, Feng W J. Novel non-periodic spoof surface plasmon polaritons with H-shaped cells and its application to high selectivity wideband bandpass filter[J]. Scientific Reports, 8, 2546(2018).

    [14] Zand I, Mahigir A, Pakizeh T et al. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators[J]. Optics Express, 20, 7516-7525(2012).

    [15] Guo Z H, Zhang G M, Qiao L T et al. Design of the voltage tunable side-coupled asymmetric Y-type resonance cavity MIM filter based on surface plasmon polaritons[J]. OSA Continuum, 3, 609-619(2020).

    [16] Zhu Y J, Huang X G, Mei X. A surface plasmon polariton electro-optic switch based on a metal-insulator-metal structure with a strip waveguide and two side-coupled cavities[J]. Chinese Physics Letters, 29, 064214(2012).

    [17] Wang T B, Wen X W, Yin C P et al. The transmission characteristics of surface plasmon polaritons in ring resonator[J]. Optics Express, 17, 24096-24101(2009).

    [18] Guo Y H, Yan L S, Pan W et al. Characteristics of plasmonic filters with a notch located along rectangular resonators[J]. Plasmonics, 8, 167-171(2013).

    [19] Duan G Y, Lang P L, Wang L L et al. A band-pass plasmonic filter with dual-square ring resonator[J]. Modern Physics Letters B, 28, 1450188(2014).

    [20] Zhang Z, Shi F H, Chen Y H. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 10, 139-144(2015).

    [21] Wu M, Liang X Y, Yan C L et al. Design of arch-type resonance cavity filter based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 56, 202417(2019).

    [22] Zhu J H, Wang Q J, Shum P et al. A nanoplasmonic high-pass wavelength filter based on a metal-insulator-metal circuitous waveguide[J]. IEEE Transactions on Nanotechnology, 10, 1357-1361(2011).

    [23] Yun B F, Hu G H, Cui Y P. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity[J]. Plasmonics, 8, 267-275(2013).

    [24] Peng X, Li H J, Wu C N et al. Research on transmission characteristics of aperture-coupled square-ring resonator based filter[J]. Optics Communications, 294, 368-371(2013).

    [25] Han Z, Van V, Herman W N et al. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes[J]. Optics Express, 17, 12678-12684(2009).

    [26] Nezhad V F, Abaslou S, Abrishamian M S. Plasmonic band-stop filter with asymmetric rectangular ring for WDM networks[J]. Journal of Optics, 15, 055007(2013).

    [27] Geis W, Sinta R, Mowers W et al. Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient[J]. Applied Physics Letters, 84, 3729-3731(2004).

    [28] Zhu J H, Huang X G, Mei X. Plasmonic electro-optical switches operating at telecom wavelengths[J]. Plasmonics, 6, 605-612(2011).

    [29] Zhu J H, Wang Q J, Shum P et al. A simple nanometeric plasmonic narrow-band filter structure based on metal-insulator-metal waveguide[J]. IEEE Transactions on Nanotechnology, 10, 1371-1376(2011).

    [30] Shi S S, Wei Z C, Lu Z Y et al. Enhanced plasmonic band-pass filter with symmetric dual side-coupled nanodisk resonators[J]. Journal of Applied Physics, 118, 143103(2015).

    [31] Liu H R, Zhang G M, Wang Z S et al. Design of the square concave ring resonantor MIM filter based on the surface plasmon polaritons[J]. Acta Photonica Sinica, 47, 0223004(2018).

    [32] Zheng G G, Su W, Chen Y Y et al. Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material[J]. Journal of Optics, 14, 055001(2012).

    [33] Song C, Qu S N, Wang J C et al. Plasmonic tunable filter based on trapezoid resonator waveguide[J]. Journal of Modern Optics, 62, 1400-1404(2015).

    Meng Wu, Xiyin Liang, Duixiong Sun, Lingfei Xie, Ruilin Chen, Dapeng Wen, Tianchen Zhang. Design of Asymmetric Rectangular Ring Resonance Cavity Electrically Adjustable Filter Based on Surface Plasmon Polaritons[J]. Acta Optica Sinica, 2020, 40(14): 1423001
    Download Citation