• Chinese Optics Letters
  • Vol. 22, Issue 8, 082501 (2024)
Ye Jin1,2,3, Yujun Xie1,2,3, Zhihan Zhang2,4,5, Donglai Lu2,4..., Menghan Yang1,2,3, Ang Li1,2,3, Xiangyan Meng1,2,3, Yang Qu1,2,3, Leliang Li2,4, Nuannuan Shi1,2,3, Wei Li1,2,3, Ninghua Zhu1,2,3, Nan Qi2,4,* and Ming Li1,2,3,**|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
  • 3School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 5Peng Cheng Laboratory, Shenzhen 518055, China
  • show less
    DOI: 10.3788/COL202422.082501 Cite this Article Set citation alerts
    Ye Jin, Yujun Xie, Zhihan Zhang, Donglai Lu, Menghan Yang, Ang Li, Xiangyan Meng, Yang Qu, Leliang Li, Nuannuan Shi, Wei Li, Ninghua Zhu, Nan Qi, Ming Li, "4 × 112 Gb/s hybrid integrated silicon receiver based on photonic-electronic co-design," Chin. Opt. Lett. 22, 082501 (2024) Copy Citation Text show less
    References

    [1] D. V. Plant, M. Morsy-Osman, M. Chagnon. Optical communication systems for datacenter networks. Optical Fiber Communications Conference and Exhibition (OFC)(2017).

    [2] C. Sun, M. T. Wade, Y. Lee et al. Single-chip microprocessor that communicates directly using light. Nature, 528, 534(2015).

    [3] A. H. Atabaki, S. Moazeni, F. Pavanello et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349(2018).

    [4] C. H. Chan, L. Cheng, W. Deng et al. Trending IC design directions in 2022. J. Semicond., 43, 071401(2022).

    [5] Y. Zhao, L. Chen, R. Aroca et al. Silicon photonic based stacked die assembly toward 4×200-Gbit/s short-reach transmission. J. Lightwave Technol., 40, 1369(2022).

    [6] C. Doerr, L. Chen, D. Vermeulen et al. Single-chip silicon photonics 100-Gb/s coherent transceiver. Optical Fiber Communication Conference, Th5C.1(2014).

    [7] C. Xie, P. Magill, D. Li et al. Real-time demonstration of silicon-photonics-based QSFP-DD 400GBASE-DR4 transceivers for datacenter applications. Optical Fiber Communications Conference and Exhibition (OFC)(2020).

    [8] J. Shi, M. Jin, T. Yang et al. 16-channel photonic–electric co-designed silicon transmitter with ultra-low power consumption. Photonics Res., 11, 143(2023).

    [9] L. Liu, L. Chang, Y. Kuang et al. Low-cost hybrid integrated 4 × 25 GBaud PAM-4 CWDM ROSA with a PLC-based arrayed waveguide grating de-multiplexer. Photonics Res., 7, 722(2019).

    [10] H. Yu, D. Patel, W. Liu et al. 800 Gbps fully integrated silicon photonics transmitter for data center applications. Optical Fiber Communication Conference (OFC), M2D.7(2022).

    [11] Y. Wang, J. Yu, N. Chi et al. Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication. IEEE Photonics J., 7, 7201805(2015).

    [12] C. Yang, R. Hu, M. Luo et al. IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML. IEEE Photonics J., 8, 7903907(2016).

    [13] K. Zhong, X. Zhou, T. Gui et al. Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. Opt. Express, 23, 1176(2015).

    [14] M. M. P. Fard, G. Cowan, O. Liboiron-Ladouceur. Responsivity optimization of a high-speed germanium-on-silicon photodetector. Opt. Express, 24, 27738(2016).

    [15] H. Chen, P. Verheyen, P. De Heyn et al. −1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt. Express, 24, 4622(2016).

    [16] Q. Pan, X. Luo. A 58-dBΩ 20-Gb/s inverter-based cascode transimpedance amplifier for optical communications. J. Semicond., 43, 012401(2022).

    [17] Q. Pan, X. Luo, Z. Li et al. A 26-Gb/s CMOS optical receiver with a reference-less CDR in 65-nm CMOS. J. Semicond., 43, 072401(2022).

    [18] M. Tan, J. Xu, S. Liu et al. Co-packaged optics (CPO): status, challenges, and solutions. Front. Optoelectron., 16, 1(2023).

    [19] C. Minkenberg, R. Krishnaswamy, A. Zilkie et al. Co-packaged datacenter optics: opportunities and challenges. IET Optoelectron., 15, 77(2021).

    [20] R. Meade, S. Ardalan, M. Davenport et al. TeraPHY: a high-density electronic-photonic chiplet for optical I/O from a multi-chip module. Optical Fiber Communications Conference and Exhibition (OFC)(2019).

    [21] S. Kanazawa, T. Fujisawa, N. Nunoya et al. Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission. J. Lightwave Technol., 31, 602(2013).

    [22] Y. Hong, K. Li, C. Lacava et al. High-speed DD transmission using a silicon receiver co-integrated with a 28-nm CMOS gain-tunable fully-differential TIA. J. Lightwave Technol., 39, 1138(2021).

    [23] W. Li, H. Zhang, X. Hu et al. 100 Gbit/s co-designed optical receiver with hybrid integration. Opt. Express, 29, 14304(2021).

    [24] J. Lambrecht, H. Ramon, B. Moeneclaey et al. A 106-Gb/s PAM-4 silicon optical receiver. IEEE Photon. Technol. Lett., 31, 505(2019).

    [25] F. Bozorgi, M. Bruccoleri, E. Rahimi et al. Analog front end of 50-Gb/s SiGe BiCMOS opto-electrical receiver in 3-D-integrated silicon photonics technology. IEEE J. Solid-State Circuits, 57, 312(2022).

    [26] D. Okamoto, Y. Suzuki, K. Takemura et al. 112 Gb/s PAM-4 silicon photonics receiver integrated with SiGe-BiCMOS linear TIA. IEEE Photon. Technol. Lett., 34, 189(2022).

    [27] D. Wu, D. Wang, D. Chen et al. Experimental demonstration of a 160 Gbit/s 3D-integrated silicon photonics receiver with 1.2-pJ/bit power consumption. Opt. Express, 31, 4129(2023).

    [28] J. Lambrecht, H. Ramon, B. Moeneclaey et al. 90-Gb/s NRZ optical receiver in silicon using a fully differential transimpedance amplifier. J. Lightwave Technol., 37, 1964(2019).

    [29] S. Shekhar, J. S. Walling, D. J. Allstot. Bandwidth extension techniques for CMOS amplifiers. IEEE J. Solid-State Circuits, 41, 2424(2006).

    Ye Jin, Yujun Xie, Zhihan Zhang, Donglai Lu, Menghan Yang, Ang Li, Xiangyan Meng, Yang Qu, Leliang Li, Nuannuan Shi, Wei Li, Ninghua Zhu, Nan Qi, Ming Li, "4 × 112 Gb/s hybrid integrated silicon receiver based on photonic-electronic co-design," Chin. Opt. Lett. 22, 082501 (2024)
    Download Citation