[1] D. V. Plant, M. Morsy-Osman, M. Chagnon. Optical communication systems for datacenter networks. Optical Fiber Communications Conference and Exhibition (OFC)(2017).
[2] C. Sun, M. T. Wade, Y. Lee et al. Single-chip microprocessor that communicates directly using light. Nature, 528, 534(2015).
[3] A. H. Atabaki, S. Moazeni, F. Pavanello et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349(2018).
[4] C. H. Chan, L. Cheng, W. Deng et al. Trending IC design directions in 2022. J. Semicond., 43, 071401(2022).
[5] Y. Zhao, L. Chen, R. Aroca et al. Silicon photonic based stacked die assembly toward 4×200-Gbit/s short-reach transmission. J. Lightwave Technol., 40, 1369(2022).
[6] C. Doerr, L. Chen, D. Vermeulen et al. Single-chip silicon photonics 100-Gb/s coherent transceiver. Optical Fiber Communication Conference, Th5C.1(2014).
[7] C. Xie, P. Magill, D. Li et al. Real-time demonstration of silicon-photonics-based QSFP-DD 400GBASE-DR4 transceivers for datacenter applications. Optical Fiber Communications Conference and Exhibition (OFC)(2020).
[8] J. Shi, M. Jin, T. Yang et al. 16-channel photonic–electric co-designed silicon transmitter with ultra-low power consumption. Photonics Res., 11, 143(2023).
[9] L. Liu, L. Chang, Y. Kuang et al. Low-cost hybrid integrated 4 × 25 GBaud PAM-4 CWDM ROSA with a PLC-based arrayed waveguide grating de-multiplexer. Photonics Res., 7, 722(2019).
[10] H. Yu, D. Patel, W. Liu et al. 800 Gbps fully integrated silicon photonics transmitter for data center applications. Optical Fiber Communication Conference (OFC), M2D.7(2022).
[11] Y. Wang, J. Yu, N. Chi et al. Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication. IEEE Photonics J., 7, 7201805(2015).
[12] C. Yang, R. Hu, M. Luo et al. IM/DD-based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML. IEEE Photonics J., 8, 7903907(2016).
[13] K. Zhong, X. Zhou, T. Gui et al. Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems. Opt. Express, 23, 1176(2015).
[14] M. M. P. Fard, G. Cowan, O. Liboiron-Ladouceur. Responsivity optimization of a high-speed germanium-on-silicon photodetector. Opt. Express, 24, 27738(2016).
[15] H. Chen, P. Verheyen, P. De Heyn et al. −1 V bias 67 GHz bandwidth Si-contacted germanium waveguide p-i-n photodetector for optical links at 56 Gbps and beyond. Opt. Express, 24, 4622(2016).
[16] Q. Pan, X. Luo. A 58-dBΩ 20-Gb/s inverter-based cascode transimpedance amplifier for optical communications. J. Semicond., 43, 012401(2022).
[17] Q. Pan, X. Luo, Z. Li et al. A 26-Gb/s CMOS optical receiver with a reference-less CDR in 65-nm CMOS. J. Semicond., 43, 072401(2022).
[18] M. Tan, J. Xu, S. Liu et al. Co-packaged optics (CPO): status, challenges, and solutions. Front. Optoelectron., 16, 1(2023).
[19] C. Minkenberg, R. Krishnaswamy, A. Zilkie et al. Co-packaged datacenter optics: opportunities and challenges. IET Optoelectron., 15, 77(2021).
[20] R. Meade, S. Ardalan, M. Davenport et al. TeraPHY: a high-density electronic-photonic chiplet for optical I/O from a multi-chip module. Optical Fiber Communications Conference and Exhibition (OFC)(2019).
[21] S. Kanazawa, T. Fujisawa, N. Nunoya et al. Ultra-compact 100 GbE transmitter optical sub-assembly for 40-km SMF transmission. J. Lightwave Technol., 31, 602(2013).
[22] Y. Hong, K. Li, C. Lacava et al. High-speed DD transmission using a silicon receiver co-integrated with a 28-nm CMOS gain-tunable fully-differential TIA. J. Lightwave Technol., 39, 1138(2021).
[23] W. Li, H. Zhang, X. Hu et al. 100 Gbit/s co-designed optical receiver with hybrid integration. Opt. Express, 29, 14304(2021).
[24] J. Lambrecht, H. Ramon, B. Moeneclaey et al. A 106-Gb/s PAM-4 silicon optical receiver. IEEE Photon. Technol. Lett., 31, 505(2019).
[25] F. Bozorgi, M. Bruccoleri, E. Rahimi et al. Analog front end of 50-Gb/s SiGe BiCMOS opto-electrical receiver in 3-D-integrated silicon photonics technology. IEEE J. Solid-State Circuits, 57, 312(2022).
[26] D. Okamoto, Y. Suzuki, K. Takemura et al. 112 Gb/s PAM-4 silicon photonics receiver integrated with SiGe-BiCMOS linear TIA. IEEE Photon. Technol. Lett., 34, 189(2022).
[27] D. Wu, D. Wang, D. Chen et al. Experimental demonstration of a 160 Gbit/s 3D-integrated silicon photonics receiver with 1.2-pJ/bit power consumption. Opt. Express, 31, 4129(2023).
[28] J. Lambrecht, H. Ramon, B. Moeneclaey et al. 90-Gb/s NRZ optical receiver in silicon using a fully differential transimpedance amplifier. J. Lightwave Technol., 37, 1964(2019).
[29] S. Shekhar, J. S. Walling, D. J. Allstot. Bandwidth extension techniques for CMOS amplifiers. IEEE J. Solid-State Circuits, 41, 2424(2006).