• Opto-Electronic Engineering
  • Vol. 44, Issue 7, 732 (2017)
Taiyou Hu1、2, Hongchao Qiao1、*, Jibin Zhao1, and Ying Lu1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.07.010 Cite this Article
    Taiyou Hu, Hongchao Qiao, Jibin Zhao, Ying Lu. Development of laser shock peening equipment[J]. Opto-Electronic Engineering, 2017, 44(7): 732 Copy Citation Text show less
    References

    [1] Zhou Jianzhong, Xu Zengchuang, Huang Shu, et al. Effects of different stress ratios on fatigue crack growth in laser shot peened 6061-T6 aluminum alloy[J]. Chinese Journal of Laser, 2011, 38(9): 0903006.

    [2] Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569–576.

    [3] Nie Guifeng, Feng Aixin, Ren Xudong, et al. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum alloy[J]. Chinese Journal of Laser, 2012, 39(1): 0103006.

    [4] Liu K K, Hill M R. The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons[J]. Tribology Interna-tional, 2009, 42(9): 1250–1262.

    [5] Xu Haiying, Zou Shikun, Che Zhigang, et al. Influence of laser shock processing times on TC4 argon arc welding joint micro-structure and properties[J]. Chinese Journal of Laser, 2011, 38(3): 0303002.

    [6] Luo Kaiyu, Lu Jinzhong, Zhang Lingfeng, et al. The micro-structural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials & Design (1980-2015), 2010, 31(5): 2599–2603.

    [7] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption [J]. Journal of Applied Physics, 1963, 34(7): 2123–2124.

    [8] Clauer A H, Fairand B P, Wilcox B A. Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy[J]. Metallurgical Transactions A, 1977, 8(1): 119–125.

    [9] Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 1979, 50(3): 1497–1502.

    [10] Qiao Hongchao, Zhao Jibin. Design and implementation of online laser peening detection system[J]. Laser & Optoelec-tronics Progress, 2013, 50(7): 071401.

    [11] Zhao Xinghai, Hu Jianping, Gao Yang, et al. Experiment on delivery of megawatt Nd:YAG laser pulses by large-core optical fibers[J]. Chinese Journal of Lasers, 2010, 37(8): 1934–1938.

    [12] Zhou Shouhuan, Zhao Hong, Tang Xiaojun. High average power laser diode pumped solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7): 1605–1618.

    [13] Lee S, Yun M, Cha B H, et al. Stability analysis of a di-ode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power[J]. Applied Optics, 2002, 41(27): 5625–5631.

    [14] Qiao Hongchao, Zhao Jibin, Lu Ying. Develop and analysis of nanosecond pulse width Nd:YAG laser for laser peening[J]. Chinese Journal of Lasers, 2013, 40(8): 0802001.

    [15] Zhang Xiaopeng, Fei Qunxing, Zhang Xiaobing. The research of hundred-nanosecond pulse width Nd:YAG laser for drilling[J]. Applied Laser, 2012, 32(5): 416–419.

    [16] Qiao Hongchao, Zhao Jibin, Zhao Yixian, et al. Effect of laser peening on residual stress and micro-hardness of TC4 titanium alloy[J]. Advanced Materials Research, 2013, 710: 208–212.

    Taiyou Hu, Hongchao Qiao, Jibin Zhao, Ying Lu. Development of laser shock peening equipment[J]. Opto-Electronic Engineering, 2017, 44(7): 732
    Download Citation